ಕರ್ನಾಟಕ ಸರ್ಕಾರ

District Administration and Zilla Panchayath and Deputy Director, Department of School Education and Literacy Kolar District, Kolar

10th standard MATHEMATICS

WORK SHEETS

KEY ANSWERS

UNIT 1: ARITHMETIC PROGRESSION

I)

1) (A) a_n=a+(n-1) d 2) (C) 25 3) (C) 10,7,4,1, -----4) (B) 10 5) (A) 210

II)

1) An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.

(3) $10^{th} term = m + 9p$

2)
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

4) $a, a + d, a + 2d, a + 3d \dots a + (n-1)d$

III)

1)
$$a = 2, d = 3, n = 12, a_{12} = ?$$

 $a_n = a + (n - 1)d$
 $= 2 + (12 - 1)3$
 $= 2 + 33$
 $\therefore a_n = 35$
2) $a = 3, d = 2, n = 20, S_{20} = ?$
 $S_n = \frac{n}{2} [2a + (n - 1)d]$
 $= \frac{20}{2} [2(3) + (20 - 1)2]$
 $= 10(6 + 38)$
 $= 10 \times 44$
 $\therefore S_n = 440$
3) $a = 4, d = 5, n = ?, a_n = 154$
 $a_n = a + (n - 1)d$
 $154 = 4 + (n - 1)5$
 $154 = 4 + 5n - 5$
 $154 = 5n - 1$
 $154 + 1 = 5n$
 $n = \frac{155}{5}$
 $n = 31$
 $\therefore 154 \text{ is a term of the given } A, P.$
4) Given, $a_8 = 50$ and $d = 6a = ?$
 $= > a + 7d = 50$
 $a = 50 - 42$
 $\therefore a = 8$

5) Given, x, 2x + p and 3x + 6 are in A.P.
=>
$$2x + p = \frac{x + 3x + 6}{2}$$

 $2(2x + p) = 4x + 6$
 $4x + 2p = 4x + 6$
 $2p = 6$
 $\therefore p = 3$
6) $l = 101, d = 5, n = 15, a_{15} = ?$
 $a_n = l - (n - 1)d$
 $= 101 - (15 - 1)5$
 $= 101 - 70$
 $\therefore a_{15} = 31$
 $\therefore 15^n$ term from the last is 31
IV
1) Data: $a_1 = 3, a_5 = -11, a_{50} = ?$
Solution: $a_n = a + (n - 1)d$
 $a_3 = 3$
 $a_5 = -11$
 $a + 2d = 3$
 $-2d = -14$
 $d = -7$
substitute $d = -7$ in (1) you get $a = 17$
 $a_{50} = a + 49d$
 $= 17 + 49(-7)$
 $a_{50} = -326$
2) Solution: $4 + 81 + 16 + -----+200$
 $a = 4, d = 4, a_n = 200, S_n = ?$
 $a + (n - 1)(4) = 200$
 $n = 50$
 $S_n = \frac{n}{2}(a + an)$
 $= \frac{5n}{2}(4 + 200)$
 $= 5100$

3) Data: $a_7 = 4a_2$, $a_{12} = 2 + 3a_4$, Ap=? Solution: $\mathbf{a}_{\mathbf{n}} = \mathbf{a} + (\mathbf{n-1}) \mathbf{d}$ $a_{12} = 2 + 3a_4$ $a_7 = 4a_2$ a + 6d = 4(a + d) a + 11d = 2 + 3(a + 3d)a + 6d = 4a + 4da + 11d = 2 + 3a + 9d2a - 2d = -2----(2) 3a = 2d-----(1) Substitute (1) in (2) we get 2a - 3a = -2a = 2Substitute a=2 in (1) you get d=3. Therefore, given A.P. is 2, 5, 8, 11.... 4) Data: 1+2+3+4+.....+n=120 Sum of first n natural numbers = 120 $S_n = 120$ $S_n = \frac{n(n+1)}{2}$ $120 = \frac{n(n+1)}{2}$ 240 = n(n+1) $15 \ge 16 = n(n+1)$ *n* = 15 15 rows can be completed. V) 1) $a_4 + a_8 = 24 \implies a + 3d + a + 7d = 24$ 2a + 10d = 24 -----(1) $a_6 + a_{10} = 44 \implies a + 5d + a + 9d = 44$ 2a + 14d = 44 ----- (2) Solving (1) and (2)2a + 10d = 242a + 14d = 44-4d = -20d = 5**Consider** a + 10d = 242a + 10(5) = 242a = 24 - 50 $\therefore a = -13$ $\therefore a_1 = -13, a_2 = -8 \text{ and } a_3 = -3$

The

2) Given l, b, h are in A.P. Let, a - d = l, b = a and h = a + dGiven, l + b + h = 15= a - d + a + a + d = 153a = 15 $\therefore a = 5$ Volume of the cuboid = lbh80 = (a-d)(a)(a+d)80 = (5 - d)(5)(5 + d) $16 = 25 - d^2$ $d^2 = 25 - 16$ $d = \sqrt{9} = d = 3$ \therefore *l* = 2 units, *b* = 5 units and *h* = 8 units 3) Here, n = 10, d = -30. Let the amounts of the prizes be $a, a - 30, a - 60, \dots, a - 270$ $a + a - 30 + a - 60 + \dots + a - 270 = 2650$ $a = a, l = a - 270, S_n = 2650$ *n*=10 $S_n = \frac{n}{2} [a+l]$ $S_{10} = \frac{10}{2} [a + a - 270]$ 2650 = 5(2a - 270)2a - 270 = 530=> a = 400Value of each prize is 400 370, 340, 310, 280, 250, 220, 190, 160, 130.

UNIT-2: TRIANGLES

I. Multiple choice questions:

- 1. B) 16: 81
- 2. A) 5cm
- 3. D) $\frac{AE}{EC}$
- 4. C) 6cm
- 5. C) 6, 8, 10

II. One mark questions:

1. Thales' theorem(Basic proportionality theorem):

If a line drawn parallel to one side of a triangle to intersect the other two sides in two distinct points, then the other two sides are divided in the same ratio.

2. **Pythagoras' theorem**: In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

3.
$$BC^2 = AC^2 - AB^2$$

4. $\frac{KN}{KL} = \frac{KP}{KM}$ Or $\frac{KN}{KL} = \frac{NP}{LM}$

III. Two marks questions:

1. Given, Area of $\triangle PQR = 64$ sqcm, Area of $\triangle ABC = 144$ sqcm, QR= 8cm, BC=? Given $\triangle PQR \sim \triangle ABC$

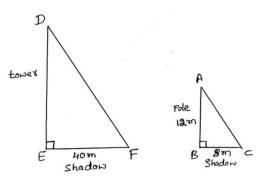
$$\therefore \frac{area \ of \ \triangle PQR}{area \ of \ \triangle ABC} = \frac{QR^2}{BC^2}$$
$$\frac{64}{144} = \left(\frac{QR}{BC}\right)^2$$
$$\therefore \sqrt{\frac{64}{144}} = \frac{QR}{BC}$$
$$\frac{8}{12} = \frac{8}{BC}$$
$$BC = \frac{12X8}{8}$$
$$BC = 12cm$$

2. Given: ABC is an isosceles triangle.

$$\therefore AB = BC$$

In $\triangle ABC$, $\angle B = 90^{\circ}$
From Pythagoras theorem
 $AC^{2} = AB^{2} + BC^{2}$
 $= AB^{2} + AB^{2}$ ($\because AB = BC$)
 $AC^{2} = 2AB^{2}$

3. Length of the vertical pole = AB = 12mLength of the shadow casts by the pole = BC = 8mLength of the shadow casts by the tower = EF = 40mLet the height of the tower = h m



In $\triangle ABC$ and $\triangle DEF$ $|\underline{B}| = |\underline{E}| = 90^{\circ}$ <u>| C = | F</u> [The angles made by sun at the same time] $\therefore \Delta ABC \sim \Delta DEF$ [By AA-criterion of similarity] $\frac{AB}{DE} = \frac{BC}{EF}$ $\frac{12}{h} = \frac{8}{40}$ $\frac{12\times40}{8} = h$ h = 60 \therefore Height of the tower = 60m. **IV. Three marks questions:** 1. ABC is an equilateral triangle. $\therefore AB = BC = AC$ and $\bot ABC = \bot BAC = \bot ACB = 60^{\circ}$ Since $AN \perp BC$ $\therefore \bot ANB = \bot ANC = 90^{\circ}$ and BN = NCIn $\triangle ANB$, $\square ANB = 90^{\circ}$ $\therefore AB^2 = BN^2 + AN^2$ $AB^2 = (\frac{1}{2}BC)^2 + AN^2$ $=\frac{1}{4}BC^2 + AN^2$ $AB² = \frac{BC² + 4AN²}{4}$ 4AB² = BC² + 4AN² $4AB^2 = AB^2 + 4AN^2 (::BC = AB)$ $4AB^2 - AB^2 = 4AN^2$ $3AB^2 = 4AN^2$ 2. In $\triangle AOB$ and $\triangle COD$ we have, <u>| AOB = | COD</u> [Vertically opposite angles] |OAB = |OCD|[Alternate angles, AB||DC] $\Delta AOB \sim \Delta COD$ [By AA-criterion]

 $\frac{ar(\Delta AOB)}{ar(\Delta COD)} = \frac{AB^2}{DC^2}$

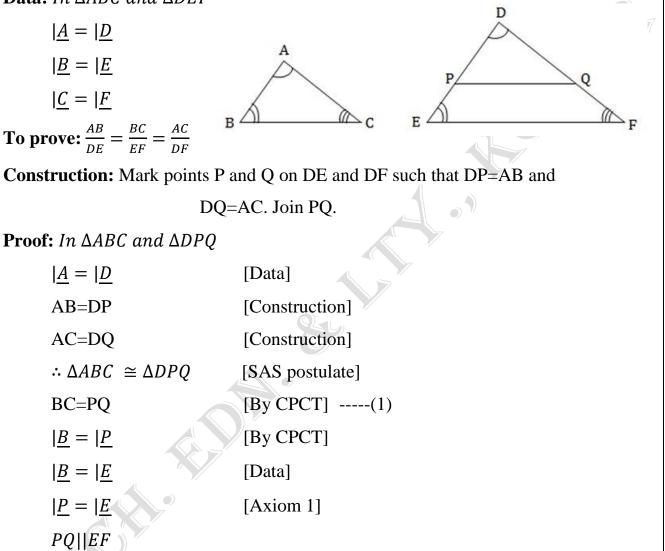
 $\frac{ar(\Delta AOB)}{ar(\Delta COD)} = \frac{(2DC)^2}{(DC)^2} = \frac{4}{1}$

 $\therefore ar(\Delta AOB): ar(\Delta COD) = 4:1$

V. Four/ Five mark questions :

1. Prove that "If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio (proportion) and hence the two triangles are similar".

Data: In $\triangle ABC$ and $\triangle DEF$



[Corollary of BPT]

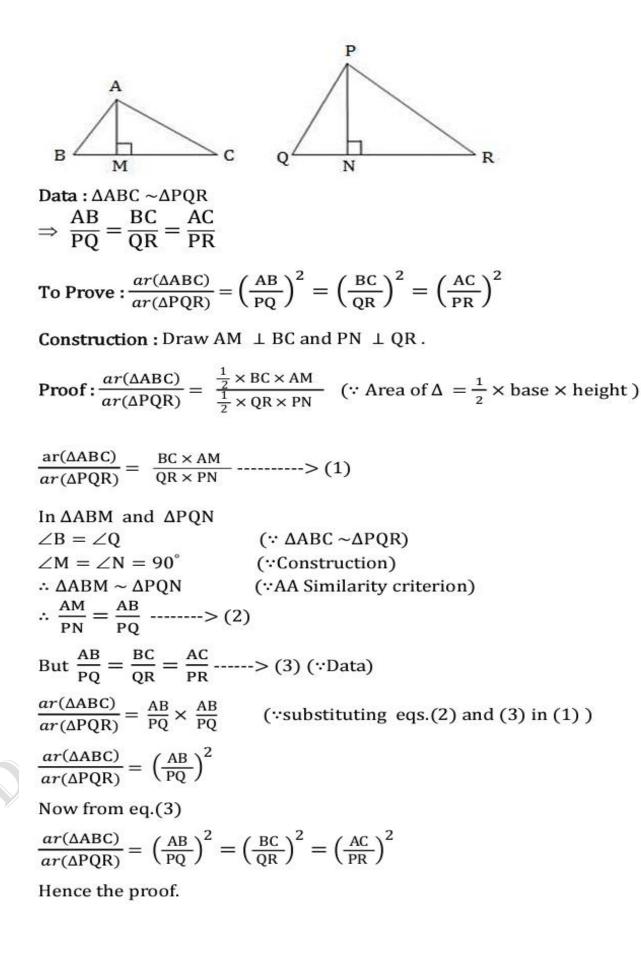
[From (1) and construction]

∴ Hence the proof.

 $\frac{DP}{DE} = \frac{PQ}{EF} = \frac{DQ}{DF}$

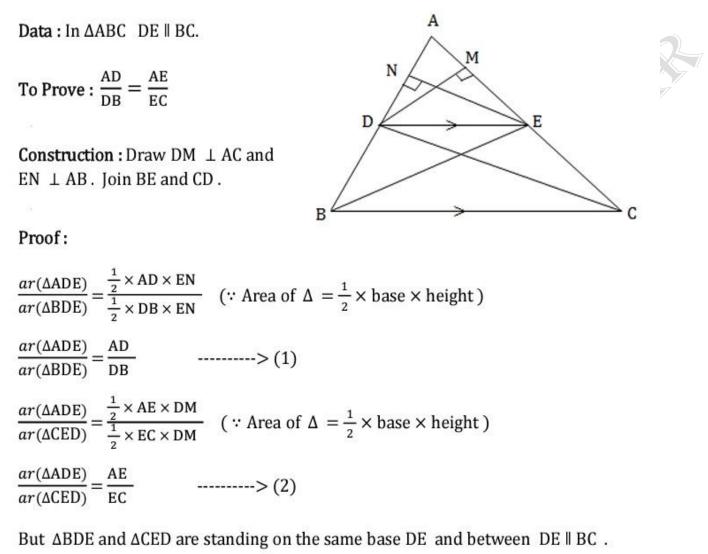
 $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

2. Prove that "The ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides".



3. State and prove the Basic proportionality (Thales') theorem.

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.



 $ar(\Delta BDE) = ar(\Delta CED) \quad \dots > (3)$

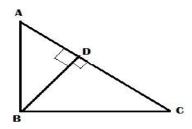
 \therefore from equations (1), (2) and (3)

 $\frac{AD}{DB} = \frac{AE}{EC}$

Hence the proof.

4. . State and prove the Pythagoras theorem.

" In a right angled triangle , the square on the hypotenuse is equal to the sum of the squares on other two sides ".



Data : $\triangle ABC$ is a right triangle and $\angle B = 90^{\circ}$ **To Prove** : $AC^2 = AB^2 + BC^2$

Construction : Draw BD ⊥ AC

Proof: In \triangle ADB and \triangle ABC

 $\angle D = \angle B = 90^{\circ}$ (: Data and Construction) $\angle A = \angle A$ (∵Common angle) $\Delta ADB \sim \Delta ABC$ (:: AAA Similarity Criterion) $\therefore \frac{AD}{AB} = \frac{AB}{AC}$ (: Proportional sides) $AC. AD = AB^2 ----> (1)$ Similarly In \triangle BDC and \triangle ABC $\angle D = \angle B = 90^{\circ}$ (: Data and Construction) $\angle C = \angle C$ (∵ Common angle) $\Delta BDC \sim \Delta ABC$ (:: AAA Similarity Criterion) $\therefore \frac{DC}{BC} = \frac{BC}{AC}$ (: Proportional sides) $AC. DC = BC^2 ----> (2)$ AC.AD + AC.DC = $AB^2 + BC^2$ [: By adding (1) and (2)] $AC (AD + DC) = AB^2 + BC^2$ $AC \times AC = AB^2 + BC^2$ (: from fig. AD + DC = AC) $AC^2 = AB^2 + BC^2$ Hence the proof.

UNIT-3: PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Multiple Choice Questions

1 (B)
$$\frac{a_1}{a} = \frac{b_1}{b} \neq \frac{c_1}{a}$$

2 (C) Exactly one solution

$$2 \qquad (b) \quad \text{Exactly off} \\ 2 \qquad (b) \quad a_1 \quad b_1 \quad b_1$$

3 (A)
$$\frac{1}{a_2} \neq \frac{1}{b_2}$$

- 4 (D) coincident lines
- 5 (B) Consistent

One Mark Questions

1 $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, where a_1, b_1, c_1, a_2, b_2 and c_2 are all real numbers

- 2 Infinitely many solutions.
- $3 x = 2 ext{ and } y = 1$

Two marks questions:

1

```
\begin{array}{l} x+y=8\\ \frac{2x-y=7}{3x=15}\\ x=5 \end{array} (addition)
```

Substituting the value of x in x + y = 8

$$5 + y = {$$

 $\therefore x = 5 and y = 3$

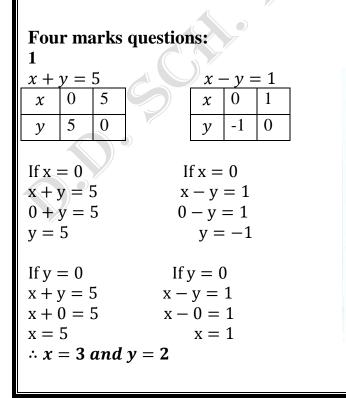
```
2
```

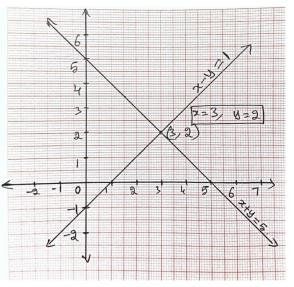
```
x + y = 5 - (1)
2x + 3y = 12 - (2)
Multiplying the equation (1) by 2 we get
2x + 2y = 10 - - - (3)
Solving equation (2) and (3)
2x + 3y = 12
\frac{2x + 2y = 10}{y = 2}
(subtraction)
Substitute the value of y in x + y = 5,
x + 2 = 5
x = 3
\therefore x = 3 \text{ and } y = 2
```

Three marks questions:

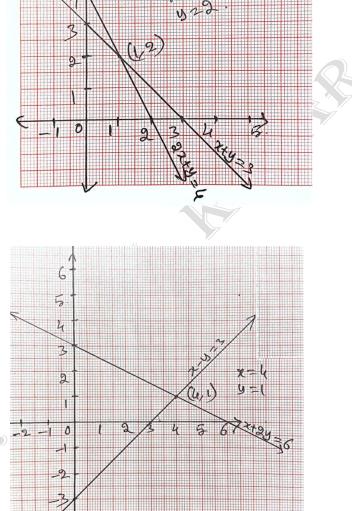
1 Let the two numbers be *x* and *y*. According to the data x + y = 50 - - - - (1)x - y = 22 - - - - (2)Solving (1) and (2)x + y = 50x-y=22(addition) 2x = 72*x*=36 By Substituting the value of x in (1) we get x + y = 5036 + y = 50*y* = 14 : The two numbers are 36 and 14 2 Let the age of son be 'x' years and the age of father be 'y' years 2x + y = 56 - - - - - (1)x + 2y = 82 - - - - (2)Multiply the equation (2) by 2 we get 2x + 4y = 164 - - - - (3)Solving (1) and (3)2x + 4y = 1642x + y = 563y = 108y = 36By substituting the value of y in (1) we get x=10

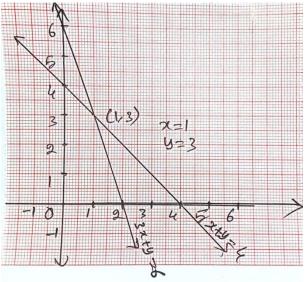
... The age of the son and the age of father are 10 years and 36 years respectively.





2x + y = 42 x + y = 33 0 2 0 Х Х 4 3 0 0 v y If $\mathbf{x} = \mathbf{0}$ If x = 02x + y = 4 $\mathbf{x} + \mathbf{y} = \mathbf{3}$ 0 + y = 40 + y = 3y = 4 y = 3If y = 0If y = 02x + y = 4 $\mathbf{x} + \mathbf{y} = \mathbf{3}$ 0 1 2x + 0 = 4x + 0 = 3x = 2x = 3 $\therefore x = 1$ and y = 23 x + 2y = 6and x - y = 33 0 6 0 х х 5 3 0 -3 0 y ν 4 If $\mathbf{x} = \mathbf{0}$ If x = 03 x + 2y = 6x - y = 32 0 - y = 30 + 2y = 6y = 3y = -30 If y = 0If y = 0x + 2y = 6x - y = 3x + 0 = 6x - 0 = 3x = 3x = 6 $\therefore x = 4$ and y = 14 and 3x + y = 6x + y = 42 4 0 0 х x 6 0 4 0 y ν If $\mathbf{x} = \mathbf{0}$ If x = 03x + y = 6x + y = 40 + y = 60 + y = 42 y = 6v = 4If y = 0If y = 0-10 2 1 x + y = 43x + y = 63x + 0 = 6x + 0 = 4x = 2x = 4 $\therefore x = 1$ and y = 3





UNIT-4: CIRCLES

- I) Multiple Choice Questions
- 1 B) parallel to each other
- 2 C) secant
- 3 A) 2
- 4 A) 70°
- 5 A)50⁰

II) One Mark Questions.

- 1 The measure of the angle between radius and tangent at the point of contact is 90°
- 2 A straight line which intersects a circle at two distinct points is called the secant of a circle

3 A straight line which touches a circle at only one point is called the tangent of a circle

III) Two Marks Questions

```
1 In adjoining fig OA=6cm, AP-8cm, \bot A=90^{\circ}
    By Pythagoras theorem
         OP^2 = OA^2 + AP^2
             =(6)^{2}+(8)^{2}
             = 36 + 64
             = 100
         OP = \pm 10
     d =10 cm
  In adjoining fig
2
    OR=3cm, OQ=4cm, LR=90^{\circ}
     By Pythagoras theorem
         OQ^2 = OR^2 + RQ^2
         OQ^2 - OR^2 = RQ^2
         (5)^2 - (3)^2 =
            25 - 9 =
             16 = RO^2
        RQ = \pm 4
```

```
PQ = 2RQ = 2 \times 4 = 8 cm
```

IV) Three Marks Questions

1. Prove that "the length of tangents drawn from an external point to a circle is equal."

Given : 'O' is the centre of the circle, 'P'is an

external point. AP and BP are the tangents

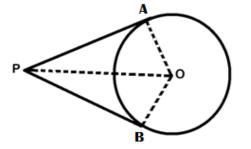
To Prove : AP = BP

Construction : Join OA, OB and OP.

Proof:

In $\triangle OQP$ and $\triangle ORP$	
--	--

$\angle OAP = \angle OBP = 90$	0^0 [Theorem 4.1]
OP = OP	[Common side]
OA = OB	[Radii of same circle]
$\Delta OAP \cong \Delta OBP$	[RHS Postulate]
AP=BP	[CPCT]



2. Prove that "the tangent at any point of a circle is perpendicular to the radius through the point of contact."

X

Given : XY is the tangent at P to the circle with centre

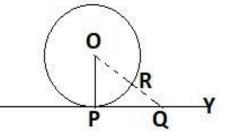
To Prove : $OP \perp XY$

Construction : Mark Any point 'Q' on XY, join OQ and

it cuts the circle at R

Proof : OR < OQ

OR = OP (Radii of the same circle)



 $\therefore OP < OQ$

This holds good for all the points on XY

 \therefore OP is the least distance from the centre to the tangent.

 $=>OP \perp XY$

UNIT 5. AREAS RELATED TO CIRCLES

I) Multiple Choice Questions

- 1. A. 2*π cm*
- 2. C. 8:9
- 3. B.44cm

II) One Mark Questions

- $1. \quad \frac{\theta}{360^0} \ge \pi r^2$
- 2. The area bounded by two radii and the corresponding arc of a circle is called the Sector.
- 3. A segment is a region covered by a chord and a corresponding arc.

III) Two Marks Questions

1. Length of the arc= $\frac{\theta}{360^{\circ}} \ge 2\pi r$

$$=\frac{50}{360^{\circ}} \times 2 \times \frac{22}{7} \times 35$$

- \therefore Length of the arc = 55cm
- 2. Radius of each quadrant = $\frac{28}{2}$ = 14 cm

Area of the shaded region = Area of the square – Area of 4 Quadrants.

Area of the shaded region = $28^2 - 4x \frac{\pi r^2}{4}$

$$= 784 - 4 x \frac{22}{7} x \frac{14x14}{4}$$

= 784 - 616

 \therefore Area of the shaded region = $168 cm^2$

3. Radius of the circle; $r = \frac{42}{2} = 21$ cm

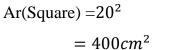
$$Ar(shaded region) = Ar(Square) - Ar(Circle)$$

$$= (side)^{2} - \pi r^{2}$$
$$= 42^{2} - \frac{22}{7} \times 21 \times 21$$
$$= 1764 - 1386$$

 \therefore Area of the shaded region= 378 cm^2

IV) Three Marks Questions.

1. OABC is a square inscribed in a quadrant OPBQ. If OA = 20 cm. (use π = 3.14)



Radius of the quadrant; r= OB

$$r = 0B = \sqrt{0A^{2} + AB^{2}}$$

$$= \sqrt{20^{2} + 20^{2}}$$

$$r = 20\sqrt{2} cm$$
Ar(Quadrant) = $\frac{\pi r^{2}}{4}$

$$= \frac{3.14 \text{ x}(20\sqrt{2})^{2}}{4}$$

$$= \frac{3.14 x 400 x 4}{4}$$
Ar(Quadrant) = 628 cm²
Ar(Shaded region) = Ar(Quadrant) - Ar(Square)

 \therefore Area of the shaded region = 228 cm²

2. Area of a sector of a circle of radius 14 cm is 154 cm². Find the length of the corresponding arc of the sector.

= 628 - 400

Given, $r = 14 \ cm$ Area of sector $= 154 \ cm^2$

$$\frac{\theta}{360^{\circ}} \times \pi r^{2} = 154$$

$$\frac{\theta}{360^{\circ}} \times \frac{22}{7} \times 14 \times 14 = 154$$

$$\frac{\theta}{360^{\circ}} \times 22 \times 2 \times 14 = 154$$

$$\theta = \frac{154 \times 360}{22 \times 2 \times 14} \Rightarrow \theta = 90^{0}$$
Length of an arc $= \frac{\theta}{360^{\circ}} \times 2\pi r$

$$= \frac{90^{\circ}}{360^{\circ}} \times 2 \times \frac{22}{7} \times 14$$

 \therefore Length of the arc= 22 *cm*

UNIT 7: COORDINATE GEOMETRY Multiple choice questions 1) (C) 5 units 3) (B) (6, 0) 4) (D) Forth quadrant 2) (D) 5 units Very Short Answer questions (1 Mark) 1)(0,0)2) (0,5)3) 7 units 4) Zero 2 Marks (2,3), (-1,7)1) $(x_1, y_1), (x_2, y_2)$ $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $d = \sqrt{(-1-2)^2 + (7-3)^2}$ $=\sqrt{(-3)^2+(4)^2}$ $=\sqrt{9+16}$ $=\sqrt{25}$ d = 5 units (2,3) →(x_1 , y_1), (4,7) →(x_2 , y_2) Mid-point = $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ 2) Mid-point = $\left(\frac{2+4}{2}, \frac{3+7}{2}\right)$ $=\left(\frac{6}{2}, \frac{10}{2}\right)$ Mid - point = (3, 5)3) Point on $x - axis(x, 0) \rightarrow (x, y), (0, 3) \rightarrow (x_1, y_1), (4, -1) \rightarrow (x_2, y_2)$ Section formula $(x, y) = \left(\frac{m_1 x_{2+} m_2 x_1}{m_1 + m_2}, \frac{m_1 y_{2+} m_2 y_1}{m_1 + m_2}\right)$ $y = \frac{m_1 y_{2+} m_2 y_1}{m_1 + m_2}$ $0 = \frac{m_1(-1) + m_2(3)}{m_1 + m_2}$ $0 = -m_1 + 3m_2$ $m_1 = 3m_2$ $m_1: m_2 = 3: 1$

4) (5, p)
$$\Rightarrow (x_1, y_1)$$
, (2, 0) $\Rightarrow (x_2, y_2)$, $d = 5$ units.
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $5 = \sqrt{(2 - 5)^2 + (0 - p)^2}$ [Squaring both sides]
 $25 = (3)^2 + p^2$
 $16 = p^2$
 $p = \pm 4$
3) Mark
1) A (0, 2), is equidistant from (3, m) and (m, 3)
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Distance from A(0, 2) to (3, m) = Distance from A(0, 2) to (m, 3)
 $\sqrt{(3 - 0)^2 + (m - 2)^2} = \sqrt{(m - 0)^2 + (3 - 2)^2}$ [Squaring both sides]
 $3^2 + m^2 - 2(m)(2) + 2^2 = m^2 + 1^2$
 $9 - 4m + 4 = 1$
 $9 + 4 - 1 = 4m$
 $m = 3$
2) Area of $\Delta = \frac{1}{2}[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$
P (1, 2) $\Rightarrow (x_1, y_1), Q (3, 7) \Rightarrow (x_3, y_2), R(5, 3) \Rightarrow (x_3, y_3).$
Area of $\Delta ABD = \frac{1}{2}[1(7 - 3) + 3(3 - 2) + 5(2 - 7)]$
 $= \frac{1}{2}[1(4) + 3(1) + 5(-5)]$
 $= \frac{1}{2}[1(4) + 3(2)] = \frac{1}{2}[-1B] = -9 sq. units = 9 sq. units.$
3) Let A (0, 0) $\Rightarrow (x_3, y_1)$ and B (3, 0) $\Rightarrow (x_2, y_2)$ then we need to find third vertex $C(x, y)$
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $AB = \sqrt{(3 - 0)^2 + (0 - 0)^2} \Rightarrow AB = \sqrt{3} \Rightarrow units$
Since the triangle is equilateral, therefore all the sides are equal,
 $AC = BC$
 $\sqrt{(x - 0)^2 + (y - 0)^2} = \sqrt{(x - 3)^2 + (y - 0)^2}[Squaring both sides]$
 $x^2 + y^2 = x^2 - 2(x)(3) + 3^2 + y^2[(x - y)^2 = x^2 - 2xy + y^2]$
 $0 = -6x + 9 \Rightarrow 6x = 9 \Rightarrow x = \frac{3}{2}$
 $AC = AB$
 $\sqrt{(x - 0)^2 + (y - 0)^2} = 3$ [Squaring both sides]
 $x^2 + y^2 = 3 \Rightarrow (\frac{3}{2})^2 + y^2 = 3 \Rightarrow y^2 = 3 - \frac{9}{4} \Rightarrow y = \frac{\sqrt{3}}{4} \Rightarrow y = \frac{\sqrt{3}}{2}$
 \therefore The third vertex is $C(x, y) = C(\frac{1}{3}, \frac{\sqrt{3}}{2})$

<u>4/5 Mark</u>

1)
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $A(-4, -1) \Rightarrow (x_1, y_1), \quad B(-2, -4) \Rightarrow (x_2, y_2).$
 $AB = \sqrt{(-2 - (-4))^2 + (-4 - (-1))^2} = \sqrt{(-2 + 4)^2 + (-4 + 1)^2}$
 $= \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$ units.
 $B(-2, -4) \Rightarrow (x_1, y_1), \quad C(4, 0) \Rightarrow (x_2, y_2).$
 $BC = \sqrt{(4 - (-2))^2 + (0 - (-4))^2} = \sqrt{(4 + 2)^2 + (0 + 4)^2}$
 $= \sqrt{6^2 + 4^2} = \sqrt{36 + 16} = \sqrt{52}$ units.
 $C(4, 0) \Rightarrow (x_1, y_1), \quad D(2, 3) \Rightarrow (x_2, y_2).$
 $CD = \sqrt{(2 - 4)^2 + (3 - 0)^2} = \sqrt{(-2)^2 + (3)^2} = \sqrt{4 + 9} = \sqrt{13}$ units.
 $D(2, 3) \Rightarrow (x_1, y_1), \quad A(-4, -1) \Rightarrow (x_2, y_2).$
 $DA = \sqrt{(-4 - 2))^2 + (-1 - 3))^2} = \sqrt{(-6)^2 + (-4)^2} = \sqrt{36 + 16} = \sqrt{52}$ units.
 $AB = CD$ and $BC = DA$, Opposite sides are equal.
 $A(-4, -1) \Rightarrow (x_1, y_1), \quad C(4, 0) \Rightarrow (x_2, y_2).$
 $AC = \sqrt{(4 - (-4))^2 + (0 - (-1))^2} = \sqrt{(4 + 4)^2 + (0 + 1)^2}$
 $= \sqrt{8^2 + 1^2} = \sqrt{64 + 1} = \sqrt{65}$ units.
 $B(-2, -4) \Rightarrow (x_1, y_1), \quad D(2, 3) \Rightarrow (x_2, y_2).$
 $BD = \sqrt{(2 - (-2))^2 + (3 - (-4))^2} = \sqrt{(2 + 2)^2 + (3 + 4)^2}$
 $= \sqrt{4^2 + 7^2} = \sqrt{16 + 49} = \sqrt{65}$ units.
 $AC = BD$, Diagonals are equal.
 \therefore ABCD is a rectangle.

2)
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Rightarrow d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $A (2,5) \Rightarrow (x_1, y_1), B (2,1) \Rightarrow (x_2, y_2).$
 $AB^2 = (2 - 2)^2 + (1 - 5)^2 = (0)^2 + (-4)^2 = 0 + 16 = 16 units.$
 $B (2,1) \Rightarrow (x_1, y_1), C (5,1) \Rightarrow (x_2, y_2).$
 $BC^2 = (5 - 2)^2 + (1 - 1)^2 = (3)^2 + (0)^2 = 9 + 0 = 9 units.$
 $A (2,5) \Rightarrow (x_1, y_1), C (5,1) \Rightarrow (x_2, y_2).$
 $AC^2 = (5 - 2)^2 + (1 - 5)^2 = (3)^2 + (4)^2 = 9 + 16 = 25 units.$
 $AB^2 + BC^2 = AC^2 \Rightarrow 16 + 9 = 25.$
 $\therefore \Delta ABC$ is a right-angled triangle. [Converse of Pythagoras theorem]
The length of the median from the vertex C.
Mid-point $= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \Rightarrow$ Mid-point of AB $\Rightarrow \left(\frac{2+2}{2}, \frac{5+4}{2}\right) \Rightarrow \left(\frac{4}{2}, \frac{9}{2}\right)$
 $\Rightarrow (2,3) \Rightarrow (x_1, y_1), C (5,1) \Rightarrow (x_2, y_2).$
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Length of the Median from vertex $C = \sqrt{(5 - 2)^2 + (1 - 3)^2}$
 $= \sqrt{(3)^2 + (-2)^2}$
 $= \sqrt{9 + 4}$
 $= \sqrt{13} units$

UNIT 8: REAL NUMBERS

- I) Multiple Choice Questions
- 1 C) $\frac{3}{5}$
- 2 B) 90
- 3 B) Composite number
- 4 A) a = bq + r

II) One Mark Questions

- 1. Given positive integers a and b , there exists unique integers q and r satisfying a = bq + r , $0 \le r < b$
- 2. Every composite number can be expressed as a product of primes & this factorization is unique apart from order on which the prime factors occur
- 3. H.C.F of any two prime numbers is one

4. 90 = $2^1 \times 3^2 \times 5^1$

III) Two Marks Questions

1. Proof : let $5 - \sqrt{3}$ be a rational number. $\rightarrow 5 - \sqrt{3} = \frac{p}{q}$ where $q \neq 0$, $p,q \in Z$ $5 - \frac{p}{q} = \sqrt{3}$ $\frac{5q - p}{q} = \sqrt{3}$ Rational number \neq irrational number LHS \neq RHS Our assumption is wrong $\therefore 5 - \sqrt{3}$ is an irrational number 2. Proof : let $\sqrt{2} + 7$ be a rational number. $\rightarrow \sqrt{2} + 7 = \frac{p}{q}$ where $q \neq 0$, $p, q \in Z$ $\sqrt{2} = \frac{p}{q} - 7$ $\sqrt{2} = \frac{p - 7q}{q}$ Irrational number \neq Rational number LHS \neq RHS Our assumption is wrong $\therefore \sqrt{2} + 7$ is an irrational number

Prime factors of $401 = 2^2 \times 101$ 3. Prime factors of $96 = 2^5 \times 3^1$ $HCF(404,96) = 2^2 = 4$ V) **Three Marks Questions.** 1) Let $\sqrt{2}$ be a rational number. $\rightarrow \sqrt{2} = \frac{p}{q}$ where $q \neq 0$, p and q are co-prime $q \sqrt{2} = p$ square on both sides $2q^2 = p^2$ (1) \therefore p² is divisible by 2 and also p is divisible by 2(2) p = 2rSubstitute p = 2r in (1) $2q^{2} = (2r)^{2}$ $2q^{2} = 4r^{2}$ $q^{2} = 2r^{2}$ \therefore q² is divisible by 2 and also q is divisible by 2 \therefore from (2) and (3) Both p and q have common factors. p and q are not co-prime. It is contradictory to our assumption. i.e., $\therefore \sqrt{2}$ is an irrational number. 2) let $\sqrt{3}$ be a rational number. $\rightarrow \sqrt{3} = \frac{p}{q}$ where $q \neq 0$, p and q are co-prime $q \sqrt{3} = p$ square on both sides $3q^2 = p^2$ (1) \therefore p² is divisible by 3 and also p is divisible by 3(2) p = 3rSubstitute p = 3r in (1)3q² = (3r)²3q² = 9r²q² = 3r² $\therefore q^2$ is divisible by 3 and also q is divisible by 3(3) \therefore from (2) and (3) p and q have common factors. i.e., both p and q are not co-prime. It is contradictory to our assumption. $\therefore \sqrt{3}$ is an irrational number.

UNIT 9: POLYNOMIALS

I) Multiple Choic	ce Questions			
1) (C) 4	2) (D) 0	3) (B) 5	4) (B) 1	5) (A) $\frac{2}{3}$
6) (A) 8	7) (D) 2	8) (C) $-\frac{7}{5}$	9) (A) 6	5
II) One Mark Qu				
1) $a = 1$, $b = 0$,				
Sum of zeroes = -	$-\frac{b}{a} = -\frac{0}{1}$			
\therefore Sum of zeroes	= 0			
2) $x^2 - 3 = 0$				
$(x+\sqrt{3})(x-\sqrt{3})$	$\overline{0} = 0$			
$\therefore x = -\sqrt{3}$ and x	$\alpha = +\sqrt{3}$			7
			with $g(x) \neq 0$, the	en we can find the
	and $r(x)$ such that			
$p(x) = g(x) \ge q$	q(x) + r(x). Wh	ere $r(x) = 0$ or degree	of $r(x) < \text{degree } g(x)$	
III) Two Mark Q	uestions		V	
1) Let $\alpha = -1$ and	$d \beta = 5$			
$\alpha + \beta = 4$				
$\alpha\beta = -5$				
The quadratic poly	ynomial is of the fo	rm		
$x^2 - (\alpha + \beta)x +$	αβ			
∴ The polynomia	al is $x^2 - 4x - 5$			
	the zeroes of the p	olynomial		
Given,				
$\begin{array}{c} \alpha + \beta = 4 \\ \alpha \beta = 1 \end{array}$				
	ynomial is of the for	rm		
$x^2 - (\alpha + \beta)x +$				
\therefore The polynomia	al is $x^2 - 4x + 1$			
	$= x^2 - 4x + 2x - 8$			
	x(x-4) + 2(x-4))		
= (zero of $x - 4$ is	(x-4)(x+2)			
and zero of $x + \frac{1}{2}$				
-	- 2 <i>x —</i> 15 are 4 an	d - 2		
· , · ·				

	- h c	
	$+\beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$	
$\alpha^2\beta + \alpha\beta^2 =$		
=	$\frac{c}{a}\left(-\frac{b}{a}\right)$	
$\therefore \alpha^2 \beta + \beta$	$\alpha\beta^2 = -\frac{bc}{a^2}$	
5)	3x - 5	
$x^2 + 2x + 1$	$3x^3 + x^2 + 2x + 5$	
	$3x^3 + 6x^2 + 3x$	
	(-) (-) (-)	
	$-5x^2 - x + 5$	
	$-5x^2 - 10x - 5$	
	(+) $(+)$ $(+)$	
	9x + 10	
\therefore Quotient = 3	3x - 5 and	
Remainder = 9		
6)	x-4	
<i>x</i> + 3		QLL,
	$\begin{array}{c} x^2 + 3x \\ (-) & (-) \end{array}$	6
	1	
	-4x - 12	
	-4x - 12 (+) (+)	
	0	
Here the remained	der =0	-
	ctor of $x^2 - x - 12$.	
(Since the divis	sor is a linear polynomial here,	it also be solved using Remainder theorem.)
IV) Three Mar	rk Ouestions	
1)	x-2	
$x^2 - x + 1$	$x^3 - 3x^2 + 3x - 5$	-
	$x^3 - x^2 + x$	
	(-) (+) (-)	_
	$-2x^2 + 2x - 5$	
	$-2x^2 + 2x - 2$	
	(+) (-) (+)	_
	-3	
		- 26 -

Verification of Division algorithm:

$$g(x) \ge q(x) + r(x) = p(x)$$

$$= (x^{2} - x + 1)(x - 2) + (-3)$$

$$= x^{3} - x^{2} + x - 2x^{2} + 2x - 2 - 3$$

$$= x^{3} - 3x^{2} + 3x - 5$$

$$= p(x)$$
2) Let $\alpha = 2 + \sqrt{3}$ and $\beta = 2 - \sqrt{3}$.
 $\alpha + \beta = 2 + \sqrt{3} + 2 - \sqrt{3}$
 $\therefore \alpha + \beta = 4$
 $\alpha\beta = (2 + \sqrt{3})(2 - \sqrt{3})$
 $= 2^{2} - (\sqrt{3})^{2}$
 $= 4 - 3$
 $\therefore \alpha\beta = 1$
The quadratic polynomial is of the form
 $x^{2} - (\alpha + \beta)x + \alpha\beta$
 \therefore The polynomial is $x^{2} + 4x + 1$
3) Given, $q(x) = x - 2$ and $r(x) = (-2x + 4)$
We know, $g(x)x q(x) + r(x) = p(x)$
 $g(x) \ge (x - 2) + (-2x + 4) = x^{3} - 3x^{2} + x + 2$
 $g(x) \ge (x - 2) = x^{3} - 3x^{2} + x + 2 + 2x - 4$
 $\therefore g(x) = \frac{x^{3} - 3x^{2} + 3x - 2}{x - 2}$
 $x^{3} - 2x^{2}$
 $(-)$ $(+)$
 $-x^{2} + 3x - 2$
 $x^{3} - 2x^{2}$
 $(-)$ $(+)$
 $-x^{2} + 3x - 2$
 $x^{3} - 2x^{2}$
 $(-)$ $(+)$
 $-x^{2} + 3x - 2$
 $x - 2$
 $(-)$ $(+)$
 $(-)$
 $x - 2$
 $x - 2$
 $(-)$ $(+)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$ $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$
 $(-)$

5

A on the second se

UNIT 10: QUADRATIC EQUATIONS

1)
1) B) -5, 3 2) (B) 2 3) (C) -8 4) (A)
$$x^2 + x - 30 = 0$$

II)
1) $b^2 - 4ac$
3) $x^2 - 100 = 0$
 $x = \pm 10$
III)
1) $x^2 + 5x + 6 = 0$
 $x(x + 3) + 2(x + 3) = 0$
 $(x + 3)(x + 2) = 0$
 $x + 3 = 0$ and $x + 2 = 0$
 $x = -3$ and $x = -2$
2) $x^2 + 4x + 4 = 0$
 $a = 1, b = 4, c = 4$
Discriminant $= b^2 - 4ac$
 $= 4^2 - 4(1)(4)$
 $= 16 - 16$
 $= 0$
3) $x^2 - 7x + 6 = 0$
 $a = 1, b = -7, c = 6$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(1)(6)}}{2(1)}$
 $x = \frac{7 \pm \sqrt{2^2 - 24}}{2}$
 $x = \frac{7 \pm \sqrt{2^2 - 24}}{2}$
 $x = \frac{7 \pm 5}{2}$ or $x = \frac{7 \pm 5}{2}$
 $x = \frac{-2}{2}$
 $x = 6$ $x = 1$

4)
$$x^2 - 3x + 1 = 0$$

 $a = 1, b = -3, c = 1$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(1)}}{2(1)}$
 $x = \frac{3 \pm \sqrt{5}}{2}$
 $x = \frac{3 \pm \sqrt{5}}{2}$ or $x = \frac{3 - \sqrt{5}}{2}$
5) If the roots of the equation are equal then
 $b^2 - 4ac = 0$
 $a = 1, b = -k, c = 4$
 $b^2 - 4ac = 0$
 $(-k)^2 - 4(1)(4) = 0$
 $k^2 - 16 = 0$
 $k^2 - 16 = 0$
 $k^2 = 16$
 $k = \pm \sqrt{16}$
 $k = \pm \sqrt{16}$
 $k = \pm 4$
6) $a = 2, b = -5, c = -1$
Discriminant $= b^2 - 4ac$
 $= (-5)^2 - 4(2)(-1)$
 $= 25 + 8$
 $= 33$
The roots are real and distinct
IV)
1) Let the present age of sister be 'x' years
Therefore present age of the girl will be '2x' years
The product of their ages hence 4 years = $(x + 4)(2x + 4)$
 $\therefore (x + 4)(2x + 4) = 160$
 $2x^2 + 4x + 8x + 16 = 160$
 $2x^2 + 4x + 8x + 16 = 160$
 $2x^2 + 12x - 144 = 0$
 $x^2 + 6x - 72 = 0$
 $x(x + 12) - 6(x + 12) = 0$
 $x = -12 \text{ or } x = 6$
Age cannot be negative $\Rightarrow x = 6$
 \therefore Girl's present age is 12 years and
present age of her sister is 6 years

4

2) Let the base be 'x' cm and altitude be (x - 7) cm and hypotenuse 13 cm By Pythagoras theorem. $13^2 = (x - 7)^2 + x^2$ $169 = x^2 + 49 - 14x + x^2$ $2x^2 - 14x - 120 = 0$ $x^2 - 7x - 60 = 0$ $x^2 - 12x + 5x - 60 = 0$ x(x-12) + 5(x-12) = 0x - 12 = 0 or x + 5 = 0x = 12or x = -5Base is 12 cm and Altitude is 5 cm. V) 1) Let the speed of passenger train be 'x' km/h \therefore The speed of express train is (x + 11) km/hDistance travelled = 132km or Time taken = Distance travelled Speed = $\frac{\text{Distance travelled}}{\text{Time taken}}$ We know that Speed Time taken by passenger train = $\frac{132}{r}$ h Time taken by express train = $\frac{132}{r+11}h$ Difference in time taken of two trains $= 1 h^{\circ}$ $\therefore \frac{132}{x} - \frac{132}{x+11} = 1$ 132(x + 11) - 132x = x(x + 11) $132x + 1452 - 132x = x^2 + 11x$ $x^2 + 11x - 1452 = 0$ $x^2 + 44x - 33x - 1452 = 0$ x(x + 44) - 33(x + 44) = 0(x + 44)(x - 33) = 0x + 44 = 0, x - 33 = 0x = -44, x = 33The speed cannot be negative. : The average speed of passenger train is 33 km/h : The average speed of express train is 44 km/h 2) Let the original duration of the tour be 'x' days.

Given, $\frac{4200}{x} - \frac{4200}{x+3} = 70$ $4200\left(\frac{1}{x} - \frac{1}{x+3}\right) = 70$ $\frac{(x+3)-x}{x(x+3)} = \frac{70}{4200}$ x(x+3) = 180 $x^2 + 3x - 180 = 0$ $x^2 + 15x - 12x - 180 = 0$ (x+15)(x-12) = 0 x + 15 = 0 or x - 12 = 0 x = -15 or x = 12number of days can't be negative => x = 12

\therefore Original duration of the tour is 12 days.

3) Let the length of the shorter side of the rectangular field be 'x' m
 ∴ the length of the longer side of the rectangular field is (x + 30) m and The length of the diagonal of the rectangular field is (x + 60) m According Pythagoras theorem

The length of the diagonal = $\sqrt{x^2 + (x + 30)^2}$

$$\sqrt{x^{2} + (x + 30)^{2}} = x + 60$$

$$x^{2} + (x + 30)^{2} = (x + 60)^{2}$$

$$x^{2} + x^{2} + 2(x)(30) + (30)^{2} = x^{2} + 2(x)(60) + (60)^{2}$$

$$2x^{2} + 60x + 900 = x^{2} + 120x + 3600$$

$$2x^{2} - x^{2} + 60x - 120x + 900 - 3600 = 0$$

$$x^{2} - 60x - 2700 = 0$$

$$x^{2} - 60x - 2700 = 0$$

$$x^{2} - 90x + 30x - 2700 = 0$$

$$x(x - 90) + 30(x - 90) = 0$$

$$(x - 90)(x + 30) = 0$$

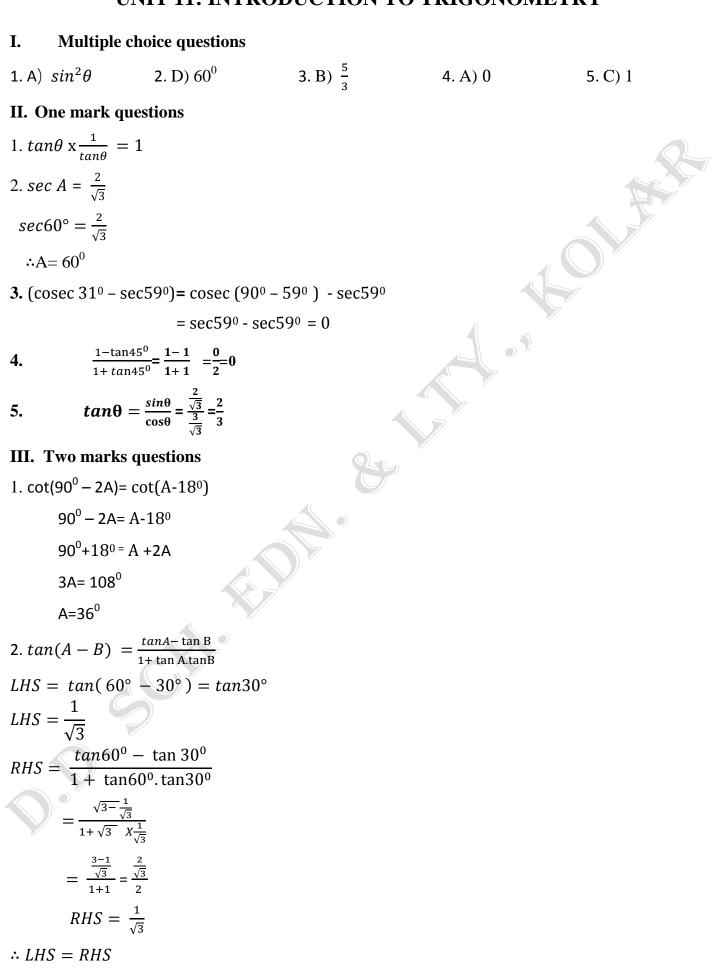
$$x - 90 = 0, x + 30 = 0$$

$$x = 90, x = -30$$

: The length of the shorter side of the rectangular field is x = 90 m

: The length of the longer side of the rectangular field is x + 30 = 90 + 30 = 120 m

UNIT 11: INTRODUCTION TO TRIGONOMETRY



3.
$$sin (90^{\circ} - 72^{\circ}) - cos 72^{\circ} - cos (90^{\circ} - 72^{\circ}) + sin 72^{\circ}$$

= $cos 72^{\circ} - cos 72^{\circ} - sin 72^{\circ} + sin 72^{\circ} = 0$
4. LHS = $\frac{sin0}{1 - cos0} = \frac{sin0}{1 - cos0} \times \frac{1 + cos0}{1 + cos0}$
= $\frac{sin0 (1 + cos0)}{1 - cos^2 d_{\odot}^2}$
= $\frac{1 + cos0}{sin^2 \theta}$
= $\frac{1 + cos0}{sin^2 \theta}$

4.
$$\frac{1-\cos\theta}{1+\cos\theta} \frac{1-\cos\theta}{1-\cos\theta} = \frac{(1-\cos\theta)^2}{i\pi^2-\cos^2\theta}$$

$$= \frac{1^2+\cos^2\theta-2\cos\theta}{\sin^2\theta}$$

$$= \frac{1^2+\cos^2\theta}{\sin^2\theta} - \frac{2\cos\theta}{\sin^2\theta}$$

$$= \cos \sec^2 \theta + \cot^2 \theta - \frac{2\cos\theta}{\sin\theta} \times \frac{1}{\sin\theta}$$

$$= \csc^2 \theta + \cot^2 \theta - 2 \cot\theta \cdot \csc^2 \theta$$

$$= (\csc^2 \theta + \cot^2 \theta - 2 \cot\theta \cdot \csc^2 \theta$$

$$= (\csc^2 \theta + \cot^2 \theta - 2 \cot^2 \theta$$

$$= (\csc^2 \theta + \cot^2 \theta - 2 \cot^2 \theta$$

$$= a^2 \sec^2 \theta + b \tan \theta + b \sec^2 \theta - 2 \cot^2 \theta - b^2 \sec^2 \theta$$

$$= a^2 \sec^2 \theta + b^2 \tan^2 \theta - b^2 \sec^2 \theta$$

$$= a^2 (\sec^2 \theta - \tan^2 \theta) - b^2 (\sec^2 \theta - \tan^2 \theta)$$

$$= (\sec^2 \theta - \tan^2 \theta) (a^2 - b^2)$$

$$= 1 (a^2 - b^2) = (a^2 - b^2)$$
6. L.H.S = (sinA+cosecA)^2 + (cosA+secA)^2
$$= \sin^2 A + \csc^2 A + 2 (2 + 1)$$

$$= 1 + \csc^2 A + \sec^2 A + 2 (1 + 1)$$

$$= 1 + \csc^2 A + \sec^2 A + 2 (2 + 1) + \tan^2 A = 7 + \cot^2 A + \tan^2 A$$
V Four or five marks questions
$$1 \cdot \frac{\csc^2 A + 1^2}{\cot^2 A} + \frac{2 \csc^2 A}{\cot^2 A}$$

$$= \frac{\csc^2 A + 1^2 + 2 \csc^2 A}{\cot^2 A}$$

$$= \frac{\csc^2 A + 1^2 + 2 \csc^2 A}{\cot^2 A}$$

$$= \frac{1}{\sin^2 A} \times \frac{\sin^2 A}{\cos^2 A} + \tan^2 A + \frac{1}{\sin A} \times \frac{\sin^2 A}{\cos^2 A}$$
$$= \sec^2 A + \tan^2 A + 2 \tan A \cdot \sec A$$
$$= (\sec A + \tan A)^2$$

2.
$$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta}$$

L.H.S =
$$\frac{\tan\theta}{1-\cot\theta} + \frac{\cot\theta}{1-\tan\theta}$$

=
$$\frac{\frac{\sin\theta}{1-\frac{\cos\theta}{\sin\theta}} + \frac{\frac{\cos\theta}{\sin\theta}}{1-\frac{\sin\theta}{\cos\theta}}$$

=
$$\frac{\frac{\sin\theta}{\cos\theta}}{1-\frac{\cos\theta}{\sin\theta}} + \frac{\frac{\cos\theta}{\sin\theta}}{\frac{\cos\theta}{\cos\theta}}$$

=
$$\frac{\frac{\sin^2\theta}{\cos\theta(\sin\theta-\cos\theta)} + \frac{\cos^2\theta}{\sin\theta(\cos\theta-\sin\theta)}$$

=
$$\frac{\sin^2\theta}{\cos\theta(\sin\theta-\cos\theta)} - \frac{\cos^2\theta}{\sin\theta(\cos\theta-\sin\theta)}$$

=
$$\frac{\sin^2\theta}{\sin\theta\cos\theta(\sin\theta-\cos\theta)}$$

=
$$\frac{(\sin\theta-\cos\theta)(\sin^2\theta+\cos^2\theta+\sin\theta.\cos\theta)}{\sin\theta\cos\theta(\sin\theta-\cos\theta)}$$

=
$$\frac{\sin^2\theta}{\sin\theta\cos\theta} + \frac{\cos^2\theta}{\sin\theta.\cos\theta} + \frac{\sin\theta.\cos\theta}{\sin\theta.\cos\theta}$$

=
$$\tan\theta + \cot\theta + 1 = \text{RHS}$$

3.L.H.S =
$$(\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta})^2$$

=
$$\frac{1+\sin^2\theta+\cos^2\theta+2\sin\theta-2\sin\theta\cos\theta-2\cos\theta}{1+\sin^2\theta+\cos^2\theta+2\sin\theta-2\sin\theta\cos\theta+2\cos\theta}$$

=
$$\frac{1+1+2\sin\theta-2\sin\theta\cos\theta-2\cos\theta}{1+1+2\sin\theta+2\sin\theta\cos\theta+2\cos\theta}$$

=
$$\frac{2(1+\sin\theta-\sin\theta\cos\theta-2\cos\theta)}{2(1+\sin\theta+\sin\theta\cos\theta+\cos\theta)}$$

=
$$\frac{(1-\cos\theta)+\sin\theta(1-\cos\theta)}{(1+\cos\theta)+\sin\theta(1+\cos\theta)}$$

=
$$\frac{(1-\cos\theta)(1+\sin\theta)}{(1+\cos\theta)(1+\sin\theta)}$$

=
$$\frac{1-\cos\theta}{1+\cos\theta}$$

UNIT-12 : SOME APPLICATIONS OF TRIGONOMETRY

3 h

Two Marks Questions

 $tanA = \frac{BC}{AB}$

 $tan30^{0} = \frac{BC}{100\sqrt{3}}$

Then AB= $100\sqrt{3}ft$ and |A = 30°

1. Let A be the point of observation and C be the top of the building.

 $\frac{1}{\sqrt{3}} = \frac{BC}{100\sqrt{3}}$ = > BC = 100m \therefore height of the building is 100ft. 2. Let P be the point on the ground where thread is tied and R be the position of kite. Then QR= $50\sqrt{3}m$ and PR= 100m $sinP = \frac{QR}{PR}$ $sinP = \frac{50\sqrt{3}}{100}$ $sinP = \frac{\sqrt{3}}{2}$ $= > |\underline{P} = 60^{\circ}$ \therefore Thread makes an angle of 60⁰ with the ground. **Three or Four Marks Questions.** 1 In $\triangle OAC$, $tan 30^\circ = \frac{AC}{OA}$ $\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} = \frac{x}{30}$ $x = \frac{30}{\sqrt{3}} = 10\sqrt{3} m$ Again in $\triangle OAC$, $\cos 30^\circ = \frac{OA}{OC}$ $\frac{\sqrt{3}}{2} = \frac{30}{2}$ $y = \frac{60}{\sqrt{3}} = 20\sqrt{3} m$ Height of the tree = $(x + y) = (10\sqrt{3} + 20\sqrt{3})$: Height of the tree = $30\sqrt{3} m$. - 36 -

In $\triangle ACQ$, $tan 30^\circ = \frac{QC}{AC}$ 2 $\frac{1}{\sqrt{3}} = \frac{30 - 1.5}{AC}$ $AC = 28.5\sqrt{3} m$ In $\triangle BCQ$, $\tan 60^\circ = \frac{QC}{BC}$ $\sqrt{3} = \frac{30 - 1.5}{BC}$ $BC = \frac{28.5}{\sqrt{3}} m$ AB = AC - BC214 $AB = 28.5\sqrt{3} - \frac{28.5}{\sqrt{3}}$ $\therefore AB = 19\sqrt{3} m$ 3 Let Height of the building is "*h*" m In $\triangle ABC$, $tan60^\circ = \frac{BC}{AB}$ $\sqrt{3} = \frac{50}{AB}$ $AB = \frac{50}{\sqrt{3}} \dots (1)$ In $\triangle ABD$, $tan 30^\circ = \frac{AD}{AB}$ $\frac{1}{\sqrt{3}} = \frac{h}{AB}$ $AB = h\sqrt{3} \dots (2)$ From equation 1 and 2 $\frac{50}{\sqrt{3}} = h\sqrt{3}$ \therefore h = $\frac{50}{3}$ m. $\frac{OA}{OQ}$ 4 In $\triangle AOQ$, tan45° = $1 = \frac{75}{00}$ 0Q = 75In $\triangle AOP$, $tan 30^\circ = \frac{OA}{OP}$ 75 1 $\frac{1}{\sqrt{3}} =$ \overline{OP} $OP = 75\sqrt{3}$ PQ = OP - OQ $PQ = 75\sqrt{3} - 75$ $\therefore PQ = 75(\sqrt{3}-1)m.$

5 Height of the tower be 'h' m In $\triangle ABC$, $tan\theta = \frac{h}{4} - - - -(i)$ In $\triangle ABD$, $tan(90^{\circ} - \theta) = \frac{h}{9}$ $cot\theta = \frac{h}{9} - - - -(ii)$ Multiplying (i) and (ii) $tan\theta x \ cot\theta = \frac{h}{4} \ge \frac{h}{9}$ $1 = \frac{h^2}{36}$ $h^2 = 36$ h = 6m.:Height of the tower is 6 meter.

6 In
$$\triangle ADE$$
, $tan60^\circ = \frac{h}{AD}$
 $\sqrt{3} = \frac{h}{x}$
 $h = x\sqrt{3}$ -----(i)
In $\triangle ABC$, $tan30^\circ = \frac{AB}{BC}$
 $\frac{1}{\sqrt{3}} = \frac{10}{x}$
 $=> x = 10\sqrt{3}$ ----(ii)

Distance of the ship from the hill = $10\sqrt{3}$ m

Substituting (ii) in (i) gives $h = 10\sqrt{3} x \sqrt{3}$

h = 30 m

=> Height of the hill = 30+10 = 40 m.

7 Let P and Q be the two positions of plane A be the point of observation In \triangle ABP, $tan60^{\circ} = \frac{PB}{AB} \Rightarrow \sqrt{3} = \frac{3600\sqrt{3}}{AB}$ AB = 3600 mIn \triangle ACQ, $tan30^{\circ} = \frac{CQ}{AC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{3600\sqrt{3}}{AC}$ AC = 10800 mBC = 10800 - 3600 BC = 7200 m but BC=PQ \Rightarrow Distance travelled is 7200 m

Speed

of the plane =
$$\frac{7200}{30}$$
 = 240 m/s

UNIT 13 : STATISTICS MULTIPAL CHOICE (1 MARKS) 4) C. median 5) A. 2 1) B. 5 2) C. 11 3) D. 2 **VERY SHORT ANSWER QUESTIONS (1 MARKS)** 1. Class mark = $\frac{lower \ limit + upper \ limit}{2} = \frac{40+50}{2} = \frac{90}{2} = 45$ 2. 3 Median = Mode + 2 Mean STAR ST **THREE MARKS QUESATIONS** 1. Class interval Frequency $f_i x_i$ x_i 0-10 2 5 10 10-20 15 90 6 5 20-30 25 125 3 30-40 35 105 4 180 40-50 45 $\sum f_i = 20$ $\sum f_i x_i = 510$ Mean $= \frac{\sum f_i x_i}{\sum f_i} = \frac{510}{20} = 25.5$ 2. Class interval Frequency $x_i \mid d_i = x_i - a$ $f_i d_i$ 10-20 7 15 -20 -140 20-30 10 25 -10 -100 30-40 6 35 0 0 40-50 8 45 +10+809 55 +20 +11050-60 $\overline{\sum} f_i d_i = 1040$ $\sum f_i = 40$ Mean = $a + \frac{\sum f_i d_i}{\sum f_i} = 35 + \frac{1040}{40} = 35 + 26 = 61$ 3 $x_i \quad d_i = x_i - a \quad u_i = \frac{x_i - a}{h}$ CI f $f_i u_i$ 200-250 7 225 -150 -3 -21 250-300 275 -100 -2 3 -6 = -37 300-350 10 -1 -10 325 -50 350-400 6 375 0 0 0 = - 9 400-450 5 425 +150 +3+15450-500 4 475 +100 +2+8=+28500-450 5 525 +50 +5 _ +1 $\sum f_i u_i = -9$ $\sum f_i = 40$

Assumed mean = a = 375 h = 50
Mean = a +
$$\left[\frac{\sum f_i u_i}{\sum f_i}\right] \times h$$

= 375 + $\left[\frac{-9}{40}\right] \times 50$
= 375 - $\frac{45}{4}$
= 375 - 11.25
Mean = 363.75

4)

Class interval	Frequency	Cumulative frequency
0-10	4	4
10-20	7	4 + 7 = 11
20-30	13	11 + 13 = 24
30-40	9	24 + 9 = 33
40-50	3	33 + 3 = 36
	N = 36	

$$\frac{n}{2} = 18, 1 = 20, f = 13, cf = 11, h = 10$$

Median = $l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$
= $20 + \left[\frac{18 - 11}{13}\right] \times 10$
= $20 + \frac{70}{13}$
= $20 + 5.38$
= 25.38

5)

Class interval	Frequency	Cumulative frequency
10-15	8	8
15-20	4	8 + 4 = 12
20-25	6	12 + 6 = 18
25-30	2	18 + 2 = 20
30-35	6	20 + 6 = 26
	N = 26	

$$\frac{n}{2} = 13, 1 = 20, \text{ f} = 6, \text{ cf} = 12, \text{ h} = 5$$

$$Median = l + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$$

$$= 20 + \left[\frac{13 - 12}{6}\right] \times 5$$

$$= 20 + \frac{5}{6}$$

$$= 20 + 0.83$$

$$= 20.83$$

$$f_1 = 11, f_2 = 6, f_0 = 9, 1 = 60, \text{ h} = 10$$

6)

Class interval	Frequency
30-40	4
40-50	7
50-60	9
60-70	11
70-80	6
80-90	2

$$f_1 = 11, \quad f_2 = 6, \quad f_0 = 9, \quad l = 60, \quad h = 10$$

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
$$= 60 + \left(\frac{11 - 9}{2(11) - 9 - 6}\right) \times 10$$
$$= 60 + \left(\frac{2}{22 - 15}\right) \times 10$$
$$= 60 + \frac{20}{7} = 60 + 2.85$$
$$= 62.85$$

7)

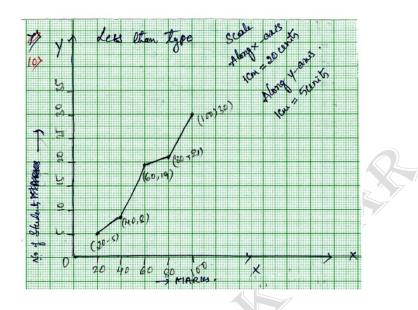
Class interval	Frequency
10-20	8
20-30	12
30-40	5
40-50	17
50-60	3
60-70	6

$$f_1 = 17, f_2 = 3, f_0 = 5, 1 = 40, h = 10$$

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
$$= 40 + \left(\frac{17 - 5}{2(17) - 5 - 3}\right) \times 10$$
$$= 40 + \left(\frac{12}{34 - 8}\right) \times 10$$
$$= 40 + \frac{120}{26} = 40 + 4.62$$
$$= 44.62$$

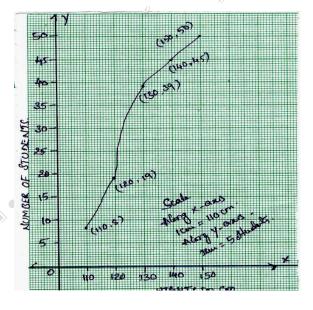
0	
×	
υ	,

Marks	Number of students
Less than 20	5
Less than 40	8
Less than 60	19
Less than 80	21
Less than 100	30

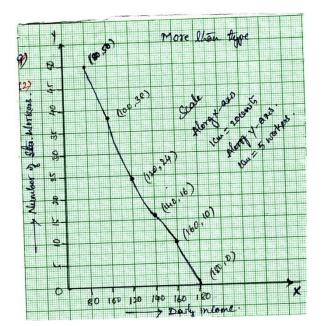


9.

Heights in cm	Number of students
Less than 110	8
Less than 120	19
Less than 130	39
Less than 140	45
Less than 150	50



10.	
D:1.	
Daily income	Number of workers
More than 80	50
More than 100	38
More than 120	24
More than 140	16
More than 160	10
More than 180	0



UNIT-14: PROBABILITY

I) 1) (C) impossible event	2) (A) 0.3	3) (C) $0 \le P(A) \le 1$
II)		
1) One	2) One	$3)\frac{1}{2}$
III) 1) Number of all possible outcom n(S) = 4 + 5 + 8 = 17 Let <i>A</i> be the event of taking out t $\therefore n(A) = 5$ $P(A) = \frac{n(A)}{n(S)}$ $\therefore P(A) = \frac{5}{17}$ 2) Number of all possible outcom Let <i>A</i> be the event of getting an e $\therefore n(A) = 3$ $P(A) = \frac{n(A)}{n(S)}$ $= \frac{3}{6} \therefore P(A) = \frac{1}{2}$ 3) Number of all possible outcom n(S) = 12 + 132 = 144 Let <i>A</i> be the event of taking out a $\therefore n(A) = 12$ $P(A) = \frac{n(A)}{n(S)}$ $= \frac{12}{144} \therefore P(A) = \frac{1}{12}$ 4) Number of all possible outcom n(S) = 90 Let <i>A</i> be the event of taking out a $\therefore n(A) = 9$ $P(A) = \frac{n(A)}{n(S)}$ $= \frac{9}{90}$ $\therefore P(A) = \frac{1}{10}$	hes, $n(S) = 6$ even number.	
	10	

III)

1) Number of all possible outcomes,

n(S) = 36

Let *A* be the event of getting the numbers whose sum is less than 7.

$$\therefore A = \{(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2) \\ (3,3), (4,1), (4,2), (5,1) \}$$

$$=> n(A) = 15$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$= \frac{15}{36} \quad \therefore P(A) = \frac{5}{12}$$

o luit

$$=\frac{15}{36}$$
 $\therefore P(A) = \frac{5}{12}$

2) Let there be *x* blue balls in the bag.

 \therefore Total number of balls in the bag = 5 + x

Probability of drawing Red ball; $P(R) = \frac{5}{5+x}$

Probability of drawing Blue ball; $P(B) = \frac{x}{5+x}$

Given, P(B) = 2P(R)

$$\frac{x}{5+x} = 2\left(\frac{5}{5+x}\right)$$

$$\frac{x}{5+x} = \frac{10}{5+x} \Longrightarrow \quad x = 10$$

... There are 10 blue balls in the bag.

UNIT 15: SURFACE AREAS AND VOLUMES

I)

1) (B) $4\pi r^2$

- 2) (B) 308 *cm*³
- 3) (C) remain unaltered
- 4) (C) 616 *cm*²
- 5) (D) 192 cm³

II)

1) *Volume of Frustum of cone* $=\frac{1}{3}\pi h[r_1^2 + r_2^2 + r_1r_2]$ 2) $\frac{TSA(Sphere)}{TSA(Hemisphere)} = \frac{4\pi r^2}{3\pi r^2} = 4:3$ 3) $TSA = \pi r(r+l)$ 4) Volume of sphere $=\frac{4}{3}\pi r^3$ III) 1) Given: l = 8 + 8 = 16cm, b = 8cm, h = 8cm, T.S.A Of cuboid =? $T.S.A.of \ a \ cuboid = 2[lb + bh + hl]$ = 2[(16)(8) + (8)(8) + (8)(16)] \therefore T.S.A. of a cuboid = 640 cm² 2) Given; edge of the cube=9cm => Height of the cone; h = 9cm and Radius of the cone; $r = \frac{9}{2}cm$ Volume of the cone = $\frac{1}{2}\pi r^2 h$ $= \frac{1}{3} x \frac{22}{7} x \frac{9}{2} x \frac{9}{2} x 9$ $= \frac{2763}{14}$ $= 190.93 \ cm^2$ IV) 1) radius of the sphere R = 3cm, radius of the wire (cylinder)r = 0.1cmlength of the wire (cylinder) h = ?Volume of cylinder = Volume of sphere $\pi r^2 h = \frac{4}{3}\pi R^3$ $\pi(0.1)^2 h = \frac{4}{3}\pi(3)^3$

 $0.01\pi h = 36\pi$

2) radius of big solid sphere R = 24 cm radius of small solid sphere r = 3cmNumber of small solid spheres =? Number of small spheres $= \frac{V(big sphere)}{V(a small sphere)}$ $=\frac{\frac{4}{3}\pi R^{3}}{\frac{4}{3}\pi r^{3}}=\frac{R^{3}}{r^{3}}$ $=\frac{24^3}{2^3}$ \therefore The number of small solid sphere = 512 V) 1) *hemisphere*: r = 5cmCylinder: $r_1 = 5cm, h_1 = 20cm$ *Cone*: $r_2 = 5cm, h_2 = 12cm$ *Slant height:* $l_2 = \sqrt{r_2^2 + h_2^2}$ $=\sqrt{5^2+12^2}$ $\therefore l_2 = 13cm$ TSA of the toy = CSA of hemisphere + CSA of cylinder + CSA of cone $= 2\pi r^2 + 2\pi r_1 h_1 + \pi r_2 l_2$ $= \left(2 \times \frac{22}{7} \times 5^2\right) + \left(2 \times \frac{22}{7} \times 5 \times 20\right) + \left(\frac{22}{7} \times 5 \times 13\right)$ $=\frac{22}{7} \times 5 (10 + 40 + 13)$ $=\frac{110}{7} \times 63$ \therefore TSA of the toy = 990cm² 2) *Cylinder*: H = 2.1m, D = 4m, R = 2m*Cone*: l = 2.8m, r = 2mTSA of the canvas = CSA of cylinder + CSA of cone $= 2\pi RH + \pi rl$ $= 2 \times \frac{22}{7} \times 2 \times 2.1 + \frac{22}{7} \times 2 \times 2.8$ \therefore TSA of the canvas = $44m^2$

Total cost of the canvas at the rate of Rs. 500 per $m^2 = Rs. (500 \times 44)$

 \therefore Total cost of the canvas = Rs. 22000

3) Cylindrical container: R = 6cm, H = 15cm*Cone*: r = 3cm, h = 12cm $V_1 = Volume \ of \ container = \pi R^2 H$ $V_1 = \pi \times 6^2 \times 15 = 540\pi \ cm^3$ $V_2 = Volume \ of \ cone + Volume \ of \ hemisphere = \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$ $=\frac{1}{3}\pi r^2(h+2r)$ $=\frac{1}{3}\times\pi\times3^{2}(12+2\times3)$ $V_{2} = 54\pi cm^{3}$ Number of ice cream cones $=\frac{V_1}{V_2}=\frac{540\pi}{54\pi}$ \therefore Number of ice cream cones = 10 4) *Original cone*: $r_1 = 12cm, h_1 = 20cm$ Removed cone: $r_2 = 3cm$, $h_2 = ?$ $\frac{h_2}{20} = \frac{3}{12}$ $\frac{h_2}{h_1} = \frac{r_2}{r_1}$ $h_1 = 5 cm$ h = 20 - 5 = 15cm $V = \frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$ $= \frac{1}{3} \times \frac{22}{7} \times 15(12^2 + 3^2 + 12 \times 3)$ \therefore Volume of the frustum = 2970cm³