CHEMISTRY KCET - 2021 Version Code - A1 Date: 29-08-2021, Time: 02:30 p.m. to 03:50 p.m.

1. In Chrysoberyl, a compound containing Beryllium, Aluminium and oxygen, oxide ions from cubic close

packed structure. Aluminium ions occupy $\frac{1}{4}^{th}$ of tetrahedral voids and Beryllium ions occupy $\frac{1}{4}^{th}$ of

	octahedral voids. The formula of the compound is				
	(A) BeAlO ₄	(B) $BeAl_2O_4$	(C) Be_2AlO_2	(D) BeAlO ₂	
	Ans (B)				
2.	The correct statement regarding defects in solids is (A) Frenkel defect is a vacancy defect (B) Schottky defect is a dislocation defect (C) Trapping of an electron In the lattices leads to the formation of F-centre (D) Schottky defect has no effect on density. Ans (C)				
3.	A metal crystaillses in BCC lattice with unit cell edge length of 300 pm and density 6.15 g cm ⁻³ . The				
	molar mass of the metal is (A) 50 g mol ⁻¹ Ans (A)	(B) 60 g mol ⁻¹	(C) 40 g mol ⁻¹	(D) 70 g mol ⁻¹	
4.		er of moles of N ₂ from a		0^5 atm. The mole fraction of of water at 28 K and 5 atm (D) 4.0×10^{-6}	
5.	A pure compound contains 2.4 g of C, 1.2×10^{23} atoms of H, 0.2 moles of oxygen atoms. Its empirical				
	formula is (A) C ₂ HO Ans (D)	$(B) C_2H_2O_2$	(C) CH ₂ O	(D) CHO	
6.	Choose the correct statement (A) K _H value is same for a gas in ally solvent (B) Higher the K _H value more the solubility of gas (C) K _H value increases on increasing the temperature of the solution (D) Easily liquefiable gases usually has lesser K _H values Ans (C) and (D)				
7.	The K_H value (K bar) of Argon (I), Carbon dioxide (II) formaldehyde (III) and methane (IV) are respectively 40.3, 1.67, 1.83×10^{-5} and 0.413 at 298 K. The increasing order of solubility of gas in liquid :				
	is (A) I < II < IV < III Ans (A)	(B) $III < IV < II < I$	(C) I < III < II < IV	(D) $I < IV < II < II$	

8.	total vapour pressure of the	•	g, the composition of the		
	(A) $x_A = 0.4$ and $x_B = 0.6$		(B) $x_A = 0.6$ and $x_B = 0$.4	
	(C) $x_A = 0.3$ and $x_B = 0.7$ Ans (A)		(D) $x_A = 0.7$ and $x_B = 0$.3	
9.	Consider the following electrodes				
	$\begin{split} P &= Z n^{2+} \left(0.0001 \; M \right) \mid Z n \qquad Q = Z n^{2+} \left(0.1 \; M \right) \mid Z n \\ R &= Z n^{2+} \left(0.01 \; M \right) \mid Z n \qquad S = Z n^{2+} \left(0.001 \; M \right) \mid Z n \\ E_{Z n \mid Z n^{2+}}^{0} &= -0.76 \; V \; \text{Electrode potentials of the above electrodes in volts are in the order} \end{split}$				
	(A) $P > S > R > Q$ Ans (C)	(B) S > R > Q > P	(C) Q > R > S > P	(D) $P > Q > R > S$	
10.	The number of angular and radial nodes in 3p orbital respectively are				
	(A) 3, 1 Ans (B)	(B) 1, 1	(C) 2, 1	(D) 2, 3	
11.	The resistance of 0.01 m KCl solution at 298 K is 1500 Ω . If the conductivity of 0.01 m KCl solution at 298 K is 0.146×10^{-3} S cm ⁻¹ . The cell constant of the conductivity cell in cm ⁻¹ is				
	(A) 0.219 Ans (A)	(B) 0.291	(C) 0.301	(D) 0.194	
12.	$H_2(g) + 2AgCl(g) \rightleftharpoons 2Ag(g)$ at 25 °C is	$(s) + 2HCl(g)$, E_{cell}^0 at 25	5 °C for the cell is 0.22	V. The equilibrium constant	
	(A) 2.8×10^7 Ans (A)	(B) 5.2×10^8	(C) 2.8×10^5	(D) 5.2×10^4	
13.	For a reaction $A + 2B \rightarrow Products$, when concentration of B alone is increased half life remains the same. If concentration of A alone is doubled, rate remains the same. The unit of rate constant for the reaction is				
	(A) S ⁻¹ Ans (A)	(B) L $\operatorname{mol}^{-1} \operatorname{S}^{-1}$	(C) mol $L^{-1} S^{-1}$	(D) atm ⁻¹	
14.	The third ionisation enthalp	y is highest in			
	(A) Alkali metals		(B) Alkaline earth meta	ls	
	(C) Chalcogens Ans (B)	ACI	(D) Pnictogens	TЛ	
15.	reaction is given by	est order reaction is k, th	e time (t) required for the	ne completion of 99% of the	
	$(A) t = \frac{4.606}{k}$	(B) $t = \frac{2.303}{k}$	(C) $t = \frac{0.693}{k}$	(D) $t = \frac{6.909}{k}$	
	Ans (A)				

- 16. The rate of a gaseous reaction is given by the expression k[A][B]². If the volume of vessel is reduced to one half of the initial volume, the reaction rate as compared to original rate is
 - (A) $\frac{1}{16}$

- (B) $\frac{1}{8}$
- (C) 8
- (D) 16

Ans (C)

- 17. The correct IUPAC name of
 - (A) 4-ethyl-1-fluoro-2-nitrobenzene
- (B) 1-ethyl-4-fluoro-3-nitrobenzene
- (C) 3-ethyl-6-fluororiitrobenzene

(D) 5-ethyl-2-fluoronitrobenzene

Ans (A)

- 18. Higher order (>3) reactions are rare due to
 - (A) Shifting of equilibrium towards reactants due to elastic collisions
 - (B) Loss of active species on collision
 - (C) Low probability of simultaneous collision of all reacting species
 - (D) Increase in entropy as more molecules are involved

Ans (C)

- 19. Arrange benzene, n-hexane and ethyne in decreasing order of their acidic behavior
 - (A) benzene > n-hexane > ethyne
- (B) n-hexane > Benzene > ethyne

(C) ethyne > n-hexane > benzene

(\mathbf{D}) ethyne > benzene > n-hexane

Ans (D)

- 20. A colloidal solution is subjected to an electric field than colloidal particles more towards anode. The amount of electrolytes of BaCl₂, AlCl₃ and NaCl required to coagulate the given colloid is in the order
 - (A) $NaCl > BaCl_2 > AlCl_3$

(B) $BaCl_2 > AlCl_3 > NaCl$

(C) $AlCl_3 = NaCl = BaCl_2$

(D) $AlCl_3 > BaCl_2 > NaCl$

Ans (A)

- 21. Which of the following is an incorrect statement?
 - (A) Hydrogen bonding is stronger than dispersion forces
 - (B) Sigma bonds are stronger than π -bonds
 - (C) Ionic bonding is non-directional
 - (D) σ -electrons are referred to as mobile electrons

Ans (D)

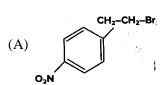
- 22. Zeta potential is
 - (A) Potential required to bring about coagulation of a colloidal sol.
 - (B) Potential required to give the particle a speed of 1 cm S⁻¹
 - (C) Potential difference between fixed charged layer and the diffused layer having opposite charges
 - (D) Potential energy of the colloidal particles.

Ans (C)

23.	Which of the following cor	npound on heating give	es N_2O ?	
	(A) Pb(NO ₃) ₂ Ans (B)	(B) NH ₄ NO ₃	(C) NH ₄ NO ₂	(D) NaNO ₃
24.	 Which of the following property is true for the given (A) Reducing property (C) Bond angle Ans (B) and (C) 		en sequence NH ₃ > PH ₃ > AsH ₃ > SbH ₃ > BiH ₃ ? (B) Thermal stability (D) Acidic character	
25.	The correct order of boiling (A) HF > H_2O > NH_3 (C) NH_3 > H_2O > HF Ans (B)	g point in the following	compounds is (B) $H_2O > HF > NH$ (D) $NH_3 > HF > H_2O$	
26	XeF ₆ on partial hydrolysis	gives a compound X w	hich has square nyrami	dal geometry 'X' is
20.	(A) XeO ₃ Ans (C)	(B) XeO ₄	(C) XeOF ₄	(D) XeO_2F_2
27.				
28.	Which of the following doe (A) CO^{2+} < Fe^{2+} < Mn^{2+} - Id (B) Ti < V < Mn - Number (C) Cr^{+2} < Mn^{2+} < Fe^{2+} - Par (D) Sc > Cr > Fe - Density Ans (C)	onic size of oxidation states	y stated against it?	
29.	Which one of the following (A) The lowest oxidation st (B) 4s orbital is completely (C) 3d orbital is not completely (D) The ions in +2 oxidation Ans (D)	tate shown by them is + filled in the ground statetely filled in the ground	2 ate d state	ZЛV
30.	. When the absolute temperature of ideal gas is doubled and pressure is involved, the volume of gas			
	(A) will be half at original	volume	(B) will be 4 times the	he original volume
	(C) will be 2 times the orig	inal volume	(D) will be $\frac{1}{4}^{th}$ time	s the original volume
	Ans (B)			
31.	Which of the following pair [Atomic numbers of $Sc = 2$ (A) Sc^{3+} , Mn^{2+}		-	on? (D) Mn ²⁺ , Tl ³⁺
	Ans (D)			

- 32. For the crystal field splitting In octahedral complexes,
 - (A) the energy of the e_g orbitals will decrease by $\left(\frac{3}{5}\right)\Delta_{\rm o}$ and that of the t_{2g} will increase by $\left(\frac{2}{5}\right)\Delta_{\rm o}$
 - (B) the energy of the e_g orbitals will increase by $\left(\frac{3}{5}\right)\Delta_o$ and that of the t_{2g} will decrease by $\left(\frac{2}{5}\right)\Delta_o$
 - (C) the energy of the e_g orbitals will increase by $\left(\frac{3}{5}\right)\Delta_o$, and that of the t_{2g} will increase by $\left(\frac{2}{5}\right)\Delta_o$
 - (D) the energy of the e_g orbitals will decrease by $\left(\frac{3}{5}\right)\Delta_o$, and that of the t_{2g} will decrease by $\left(\frac{2}{5}\right)\Delta_o$ Ans (B)
- 33. Peroxide effect is observed with the addition of HBr but not with the addition of HI to unsymmetrical alkene because
 - (A) H-I bond is stronger that H-Br and is not cleaved by the free radical
 - (B) H-I bond Is weaker than H-Br bond so that Iodine free radicals combine to form iodine molecules
 - (C) Bond strength of HI and HBr are same but free radicals arc formed in HBr
 - (D) All of these

Ans (B)


- 34. The IUPAC name of [Co(NH₃)₅(CO₃)Cl is
 - (A) Pentaamminecarbonatocobalt(III) chloride
 - (C) Pentaamminecarbonatocobaltate(III) chloride Ans (A)
- (B) Carbonatopentamminecobalt(III) chloride
- (D) Pentaamminecobalt(III) carbonatechloride
- 35. Homoleptic complexes among the following are
 - (A) $K_3[Al(C_2O_4)_3,$
- (B) $[CoCl_2(en)_2]$
- (A) A only
- (C) (A) and (C) only
- Ans (C)

- (C) $K_2[Zn(OH)_4]$
- (B) (A) and (B) only
- (D) (C) only
- 36. The correct order for wavelengths of light absorbed in the complex ions

 $\left[CoCl(NH_3)_5\right]^{2+}$, $\left[Co(NH_3)_6\right]^{3+}$ and $\left[Co(CN)_6\right]^{3+}$ is

- (A) $[CoCl(NH_3)_5]^{2+} > [Co(NH_3)_6]^{3+} > [Co(CN)_6]^{3-}$
- (C) $Co(CN)_6|^{3-} > [CoCl(NH_3)_5|^{2+} > [Co(CN)_6]^{3-}$
- (B) $[Co(NH_3)_6]^{3+} > [Co(CN)_6]^{3-} > [CoCl(NH_3)_5)^{2+}$
- (D) $[Co(NH_3)_6]^{3+} > [CoCl(NH_3)_5] > [Co(CN)_6]^{3-}$

Ans (A)

(B)

(C)

(D)

Ans (B)

- 38. Bond enthalpies of A_2 , B_2 and AB are in the ratio 2 : 1 : 2. If bond enthalpy of formation of AB is -100 kJ mol^{-1} . The bond enthalpy of B_2 is
 - (A) 100 kJ mol⁻¹
- (B) 50 kJ mol⁻¹
- (C) 200 kJ mol⁻¹
- (D) 150 kJ mol⁻¹

Ans (C)

39. The order of reactivity of the compounds

 $C_6H_5CH_2Br$, $C_6H_5CH(C_6H_5)Br$, $C_6H_5CH(CH_3)Br$ and $C_6H_5CH(CH_3)(C_6H_5)Br$ in S_N2 reaction Is

(A)
$$C_6H_5 - C - Br < C_6H_5 - C - Br < C_6H_5$$

(B)
$$C_{e}H_{s} - C_{e}H_{s} -$$

Ans (A)

- 40. The major product of the following reaction is $CH_2 = CH CH_2 OH \xrightarrow{HBr}$ product
 - (A) $CH_3 CHBr CH_2Br$

(B) $CH_2 = CH - CH_2Br$

(C) $CH_3 - CHBr - CH_2 - OH$

(D) CH_3 – CHOH – CH_2OH

Ans (A)

The product 'A' gives white precipitate when treated with bromine water. The product 'B' Is treated with Barium hydroxide to give the product C. The compound C is heated strongly to form product D. The product D is

(A) 4-methylpent-3-en-2-one

(B) But-2 enal

(C) 3-methylpent-3-en-2-one

(D) 2-methylbut-2-enal

Ans (A)

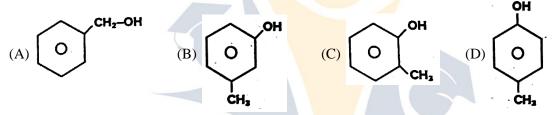
42. For the reaction $A(g) + B(g) \rightleftharpoons C(g) + D(g)$; $\Delta H = -Q kJ$.

The equilibrium constant cannot be disturbed by

(A) Addition of A

(B) Addition of D

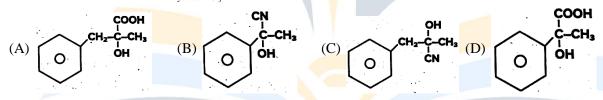
(C) Increasing of pressure


(D) Increasing of temperature

Ans (C)

- 43. An organic compound 'X' on treatment with PCC in dichloromethane gives the compound Y. Compound 'Y' reacts with I₂ arid alkali to form yellow precipitate of triiodomethane. The compound X is
 - (A) CH₃CHO
- (B) CH₃COCH₃
- (C) CH₃CH₂OH
- (D) CH₃COOH

Ans (C)


44. A compound 'A' (C₇H₈O) is insoluble in NaHCO₃ solution but dissolve in NaOH and gives a characteristic colour with neutral FeCl₃ solution. When treated with Bromine water compound forms the compound B with the formula C₇H₅OBr₃. 'A' is

Ans (B)

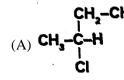
45. In set of reactions, identity D

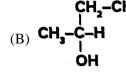
 $CH_{3}COOH \xrightarrow{SOCl_{2}} A \xrightarrow{Benzene} B \xrightarrow{HCN} C \xrightarrow{H_{2}O} D$

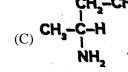
Ans (D)

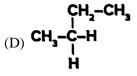
- 46. K_a values for acids H_2SO_3 , HNO_2 , CH_3COOH and HCN are respectively 1.3×10^{-2} , 4×10^{-4} , 1.8×10^{-5} and 4×10^{-10} , which of the above acids produces stronger conjugate base in aqueous solution?
 - (A) H₂SO₃
- (B) HNO₂
- (C) CH₃COOH
- (D) HCN

Ans (D)




- A, B and C respectively are
- (A) ethanol, ethane nitrile and ethyne
- (B) ethane nitrile, ethanol and ethyne
- (C) ethyne, ethanol and ethane nitrile
- (D) ethyne, ethane nitrile and ethanol


Ans (C)


48. The reagent which can do the conversion CH ₃ CO	$OOH \rightarrow CH_3 - CH_2 - OH \text{ is}$			
(A) LiAlH ₄ /ether	(B) H ₂ , Pt			
(C) NaBH ₄	(D) Na and C ₂ H ₅ OH			
Ans (A)				
49. $CH_3CHO \xrightarrow{(i) CH_3MgBr} A \xrightarrow{conc. H_2SO_4} B \xrightarrow{(ii) H_2O_5} B$	$\xrightarrow{H_6}$ C			
A and C are				
(A) Identical	(B) Position isomers			
(C) Functional isomers	(D) Optical isomers			
Ans (B)				
Which of the following is not true for oxidation?				
(A) addition of oxygen	(B) addition of electronegative element			
(C) removal of hydrogen	(D) removal of electronegative element			
Ans (D)				
51. Which is the most suitable reagent for the following	ing conversion?			
0	0			
CH3 - CH = CH - CH2 - C - CH3-				
(A) Tollen's reagent				
(B) Benzoyl peroxide				
(C) I ₂ and NaOH solution with subsequent acidifi	ica <mark>tio</mark> n			
(D) Sn and NaOH solution				
Ans (C)				
52. $C_6H_5CH_2Cl \xrightarrow{\text{alc. NH}_3} A \xrightarrow{2CH_3Cl} B$				
The product B is				
(A) N,N-dimethyl phenyl methanamine	(B) N,N-dimethyl benzenamine			
(C) N-benzyl-N-methyl methanamine	(D) phenyl-N,N-dimethyl methanamine			
Ans (A)				
53. The method by which aniline cannot be prepared	is			
(A) Nitration of benzene followed by reduction with Sn and con HCl				
(B) Degradation of benzamide with bromine in al				
(C) Reduction of nitrobenzene with H ₂ /Pd Is etha	nnol			
(D) Potassium salt of phthallmide treated with c	chlorobenzene followe <mark>d by the</mark> hydrolysis with aqueou			
NaOH solution				
Ans (D)				
54. Permanent hardness cannot be removed by				
(A) Using washing soda	(B) Calgon's method			
(C) Clark's method	(D) Ion exchange method			
	-			

55. A hydrocarbon A (C_4H_8) on reaction with HCl gives a compound B (C_4H_9Cl) which on reaction with 1 mol of NH₃ gives compound C $(C_4H_{10}N)$. On reacting with NaNO₂ and HCl followed by treatment with water, compound C yields an optically active compound D. The D is

Ans (B)

56. RNA and DNA are chiral molecules, their chirality is due to the presence of

(A) D-Sugar component

(B) L-Sugar component

(C) Chiral bases

(D) Chiral phosphate ester unit

Ans (A)

57. The property of the alkaline earth metals that increases with their atomic number is

(A) Ionisation enthalpy

(B) Electronegativity

(C) Solubility of their hydroxide in water

(D) Solublilty of their sulphate in water

Ans (C)

58. Primary structure in a nucleic acid chain contains bases as G A T G C The chain which is complementary to this chain is

(A) G G T G A ...

(B) T G A A G ...

(C) C T A C G ...

(D) T T T A G ...

Ans (C)

59. In the detection of II group acid radical, the salt containing chloride is treated with concentrated sulphuric acid, the colourless gas is liberated. The name of the gas is

(A) Hydrogen chloride gas

(B) Chlorine gas

(C) Sulphur dioxide gas

(D) Hydrogen gas

Ans (A)

60. The number of six membered and five membered rings in Buckminster Fullerene respectively is

(A) 20, 12

(B) 12, 20

(C) 14, 18

(D) 14, 11

Ans (A)

* * *

