

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

1

MODULE I

INTRODUCTION TO C LANGUAGE

Introduction to computer Hardware and software: Computer generations, computer types, bits, bytes

and words, CPU, Primary memory, Secondary memory, ports and connections, input devices, output

devices, Computers in a network, Network hardware, Software basics, software types.

Overview of C: Basic structure of C program, executing a C program. Constant, variable and data types,

Operators and expressions.

HISTORY OF C

Fig 1.1 History of ANSI C

 ‘C’ programming language is a structured, high-level, machine independent language.

 The root of all modem languages is ALGOL, introduced in the early 1960s. ALGOL was the first

computer language to use a block structure.

 In 1967, Martin Richards developed a language called BCPL (Basic Combined Programming

Language) primarily for writing system software.

 In 1970, Ken Thompson created a language using many features of BCPL and called it simply B.

B was used to create early versions of UNIX operating system at Bell Laboratories.

 C was developed by Dennis Ritchie at the Bell Laboratories in 1972. C uses many concepts from

these languages and added the concept of data types and other powerful features.

 During 1970s, C had evolved into what is now known as “traditional C”. The language became

more popular after publication of the book The C Programming Language’ by Brian Kerningham

and Dennis Ritchie in 1978.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

2

 The book was so popular that the language came to be known as “K&R C” among the

programming community.

 In 1983, American National Standards Institute (ANSI) appointed a technical committee to define

a standard for C.

 It was then approved by the International Standards Organization (ISO) in 1990. This version of C

is also referred to as C89.

 C++ and Java were evolved out of C, the standardization committee of C felt that a few features of

C++/Java, if added to C, would enhance the usefulness of the language. The result was the 1999

standard for C. This version is usually referred to as C99.

IMPORTANCE OF C

 It is a robust language.

 Programs written in ‘C’ are efficient and fast. (Because of variety of data types and powerful

operators)

 Highly Portable. (related to OS)

 Well suited for structured programming.

 Ability to extend itself

COMPUTER GENERATIONS

Generation in computer terminology is a change in technology of a computer.

Five generations of computer,

First Generation (1942-1954) uses vacuum tubes as basic components for memory and circuitry for

CPU. In this generation mainly batch processing operating system were used. There were machine code

and electric wired board languages used.

Advantages

 Vacuum tube technology made possible to make electronic digital computers.

 These computers could calculate data in millisecond.

Disadvantages

 The computers were very large in size.

 They consumed a large amount of energy.

 Air conditioning was required.

Second Generation (1952-1964): The second generation computers use transistors they were cheaper,

consumed less power, more compact in size, more reliable and faster than first generation. In this

generation assembly language and high level programming language like FORTRAN, COBOL were used.

Batch Processing and Multiprogramming operating system were used.

Advantages

 Smaller in size as compared to the first generation computers.

 Used faster peripherals like tape drives, magnetic disks, printer etc.

Disadvantages

 Cooling system was required

 Costly and not versatile

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

3

Third Generation (1964-1972): The Third generation computers used the integrated circuits (IC). In this

generation remote processing, time sharing, real time operating systems were used. High level

programming languages like FORTRAN, COBOL, BASIC, ALGOL-68 were used.

Advantages

 Smaller in size as compared to previous generations.

 Better speed and could calculate data in nanoseconds.

 Used fan for heat discharge to prevent damage.

Disadvantages

 Air conditioning was required.

 Highly sophisticated technology required for the manufacturing of IC chips.

Fourth Generation (1972-1990): The fourth generation computers use Very Large Scale Integrated

Circuits (VLSI). In this generation time sharing, real time, networks, distributed operating systems were

used. High level programming languages like C, C++, DBASE etc were used.

Advantages

 More powerful and reliable than previous generations.

 Small in size

 No air conditioning required.

Disadvantages

 The latest technology is required for manufacturing of Microprocessors.

Fifth Generation (1990-Till Date): In fifth generation computers VLSI became ULSI (Ultra Large Scale

Integration Technology). All the higher level languages like C , C++, Java, .NET etc are used in this

generation. AI (Artificial Intelligence) is an emerging technology in this generation.

Advantages

 More user friendly.

 Availability of very powerful and compact computers at cheaper rates.

Computer Types

We can classify computers based on following criteria

1. According to Purpose

2. According to Technology

3. According to size and storage capacity

According to Purpose: It is classified into 2 types

a) General Purpose Computers: Almost all computers used in offices for commercial, educational

and other applications are general purpose computers.

b) Special Purpose Computers: Computers that are designed to perform special tasks like scientific

applications and research, weather forecasting etc are called special purpose computers.

According to Technology: It is classified into 3 types

a) Analog Computers: It is a special purpose computer that represents and stores the data

continuously. Example: Thermometer, Speedometer

b) Digital Computers: It is a general purpose computer that represents and stores the data in discrete

quantity and numbers. Example: PC, Desktop

c) Hybrid computers: Incorporate the technology of both analog and digital computers. These

computer stores and process discrete numbers from digital to analog and from analog to digital.

Example: Artificial Intelligence

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

4

According to size and storage capacity: it is classified into 4 types

a) Super computer: Biggest and fastest computers designed mainly for complex and scientific

applications. It has many CPU’s which can operate in parallel. Example: CRAY3, NEC-500

b) Mainframe Computer: It is an large and fast computers but smaller and slower than super

computers. It has single CPU shared by many users. Example: IBM 3090, IBM 4300

c) Mini computer: are medium scale, smaller and generally slower than main frame computers.

They have many terminals which are connected with one CPU and can support many users.

Example PDD-1, IBM AS/400

d) Micro computer: it is an smallest digital computer which uses a micro-processor as its CPU. It

can be used as standalone and in a multi-user environment. Example: Laptops, Notebook.

Bits, Bytes and Words

 Bit: It is a single digit in a binary number and it can be either 1 or 0. It can store 256 different

combinations of ON and OFF states.

 Byte: A byte is 8 bit combinations of 1’s and 0’s.

 Word: A word is basically a number of bits CPU can deal with one go. Example 32bit machine,

64bit machine and so on.

BLOCK DIAGRAM OF COMPUTER

Computer is an electronic device and it performs the following 5 basic operations. It converts the raw

input data into information, which is useful to the users.

 Inputting: It is the process of entering data & instructions to the computer system.

 Storing: The data & instructions are stored for either initial or additional processing, as & when

required.

 Processing: It requires performing arithmetic or logical operation on the saved data to convert it

into useful information.

 Outputting: It is the process of producing the output data to the end user.

 Controlling: The above operations have to be directed in a particular sequence to be completed.

Input Unit: We need to first enter the data & instruction in the computer system, before any computation

begins. This task is accomplished by the input devices. (Eg: keyboard, mouse, scanner, digital camera etc).

Storage Unit: The data & instruction that are entered have to be stored in the computer. This storage unit

is designed to save the initial data, the intermediate result & the final result.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

5

This storage unit has 2 units: Primary storage & Secondary storage.

 Primary Storage: The primary storage, also called as the main memory, holds the data when the

computer is currently on. As soon as the system is switched off or restarted, the information held in

primary storage disappears (i.e. it is volatile in nature). Moreover, the primary storage normally

has a limited storage capacity, because it is very expensive as it is made up of semiconductor

devices.

Example: Random Access Memory (RAM), cache etc.

 Secondary Storage: The secondary storage, also called as the auxiliary storage, handles the

storage limitation & the volatile nature of the primary memory. It can retain information even

when the system is off.

Examples: floppy disks, USB devices etc.

Central Processing Unit: Together the Control Unit & the Arithmetic Logic Unit are called as the Central

Processing Unit (CPU). The CPU is the brain of the computer. The CPU is responsible for activating &

controlling the operation of other units of the computer system.

Arithmetic Logic Unit: An arithmetic logic unit (ALU) is a digital circuit used to perform arithmetic and

logic operations. It represents the fundamental building block of the central processing unit (CPU) of a

computer.

Control Unit: The control unit (CU) is a component of a computer's central processing unit (CPU) that

directs the operation of the processor. It tells the computer's memory, arithmetic/logic unit and input and

output devices how to respond to a program's instructions.

Output Unit: It accepts the results produced by the computer in coded form. It converts these coded

results to human readable form. Finally, it displays the converted results to the outside world with the help

of output devices (Eg :monitors, printers, projectors etc..).

A computer system consists of two major elements:

1. Hardware- This hardware is responsible for all the physical work of the computer.

2. Software- This software commands the hardware what to do & how to do it.

MEMORY

 A memory is just like a human brain.

 It is used to store data and instructions.

 Memory is a storage space where data is processed and stored.

Memory is of 3 types,

1. Cache Memory: It is a very high speed semiconductor memory. It acts as an buffer between CPU

and Main memory.

2. Primary Storage: The primary storage, also called as the main memory, holds the data when the

computer is currently on. As soon as the system is switched off or restarted, the information held in

primary storage disappears (i.e. it is volatile in nature). Moreover, the primary storage normally

has a limited storage capacity, because it is very expensive as it is made up of semiconductor

devices.

Example: Random Access Memory (RAM), cache etc.

3. Secondary Storage: The secondary storage, also called as the auxiliary storage, handles the

storage limitation & the volatile nature of the primary memory. It can retain information even

when the system is off.

Examples: floppy disks, USB devices etc.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

6

Random Access Memory (RAM)

 RAM constitutes the internal memory of the CPU for storing data, program and program result.

 RAM is read/write Memory and it is volatile in nature

 RAM is of 2 types

o Static RAM: The memory retains its contents as long as power remains applied.

o Dynamic RAM: It must be continuously refreshed in order to maintain the data.

Read Only Memory (ROM)

 The memory which can only read but cannot write on it, this type of memory non-volatile in

nature.

 Information’s are stored permanently.

 ROM is of 4 types

o MROM (Masked ROM): ROM’s are hardware devices that contain a pre-programmed set

of data, these kinds of ROM is called as MROM.

o PROM (Programmable ROM): is a read only memory that can be modified only once by

a user by adding the desired contents.

o EPROM (Erasable and programmable ROM): EPROM can be erased by exposing it to

ultra violet light for duration of upto 40minutes.

o EEPROM (Electrically Erasable and Programmable ROM): EEPROM is erased

electrically one byte at a time.

Flash Memory

 It is a form of EEPROM that allows multiple memory locations to be erased or written in one

programming operation.

PORTS AND CONNECTIONS

 A PORT is a physical docking point using which an external device can be connected to the

computer.

 Different types of PORTS are:

o Serial Port: used for external modems and older computer mouse, data is transferred

serially.

o Parallel Port: used for scanners and printers, data is transferred parallel.

o PS/2 Port: used for old computer keyboard and mouse.

o USB Port (Universal Serial Bus): it can connect all kinds of external USB devices.

Example Mouse, Keyboard, Printer etc

o VGA Port: Connects monitor to the computer video card, VGA ports has holes.

o Power Connector: Connects computers power cable that plugs into a power bar.

o Firewire Port: connects camcorders and video equipment to the computer.

o Modem Port: Connects a PC’s Modem to the Telephone Network.

o Ethernet Port: Connects the computer cable to the network.

o Game Port: Connects a joystick to a PC, now replaced by USB.

o DVI Port (Digital Video Interface): Connects flat panel LCD Monitor to the computers

high- end video graphics Cards.

o Sockets: Connects the Micro-phone and Speakers to the sound card of the computer.

INPUT DEVICES

 The devices which are used to give data and instructions to the computer are called Input Devices.

 Various types of input devices can be used with the computer depending upon the type of data you

want to enter in the computer.

 Example: keyboard, mouse, joystick, light pen, etc.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

7

1. Keyboard: It is the most commonly used input device. It is used to enter data and instructions

directly into the computer. There are 104 buttons on the keyboard which are called keys.

2. Mouse: Mouse is another input device which is commonly found connected with the computers. It

is basically a pointing device which works on the principle of Point and Click.
3. Light Pen: Light pen is another pointing type input device. It is a pen shaped device which can be

used by directly pointing the objects on the screen. It can also be used for making drawings

directly on the monitor screen.

4. Scanner: We can store pictures, photographs, diagrams into the computer with the help of scanner.

The scanner reads the image and saves it in the computer as a file.

5. Microphone: This is an input device which is used to record sound or voice into the computer

system. You can store voice data in the computer by speaking in front of this device.

6. Game Pad: A game-pad is a type of game controller held in two hands, where the fingers

(especially thumbs)are used to provide input by pressing buttons on it. It is also known as Control

Pad.

OUTPUT DEVICES

 The devices which are used to display the results or information are called Output Devices.

 You can view the output on the monitor or you can print it on a paper using a printer.

 Monitor and the printer are the commonly used output devices.

1. Monitor: This is the most common output device connected with the computer to display the

processed information. It looks like a TV and is also know as VDU(Visual Display Unit).

2. Printer: It gives a printed output of the results that appears on the monitor screen. Printed output is

also called Hard Copy output because unlike monitor, this output can be preserved even if the

computer is switched off.

COMPUTER IN A NETWORK

General Network Techniques:

 Computers communicate on a network, they send data packets to other computers connected to a

network bus.

 To distinguish between the computers every computer have an unique ID called MAC address

(Media Access Control).

 The MAC-addresses is primarily used by the computers to filter out incoming network traffic

that is addressed to the individual computer.

 All computers hear all network traffic since they are connected to the same bus. This network

structure is called multi-drop.

 If several computers communicate with each other at high speed they may not be able to utilize

more than 25% of the total network bandwidth. Hence it causes bandwidth problem.

Characteristics of a Computer Network

 Share resources from one computer to another.

 Create files and store them in one computer, access those files from the other computer(s)

connected over the network.

 Connect a printer, scanner, or a fax machine to one computer within the network and let other

computers of the network use the machines available over the network.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

8

NETWORK HARDWARE: Network hardware is the individual components of a network system that are

responsible for transmitting data and facilitating the operations of a computer network.

Following is the list of hardware's required to set up a computer network.

 Network Cables
 Distributors
 Routers
 Internal Network Cards
 External Network Cards

Network Cables: Network cables are used to connect computers. Example: Category 5 cable RJ-45.

Distributors: A computer can be connected to another one via a serial port but if we need to connect

many computers to produce a network, this serial connection will not work. The solution is to use a central

body to which other computers, printers, scanners, etc. can be connected and then this body will manage

or distribute network traffic.

Router:

 A router is a type of device which acts as the central point among computers and other devices that are
a part of the network.

 It is equipped with holes called ports.
 Computers and other devices are connected to a router using network cables.
 Now-a-days router comes in wireless modes using which computers can be connected without any

physical cable.
 Routers determine the path for the transfer of data as a processing unit for information packets.
 The router uses a specific protocol or set of rules to determine which information packets are to be

routed.

Network Interface Card: Network interface cards are used to connect each computer to the network so
they can communicate with the network router to receive information packets.

Network cards are of two types: Internal and External Network Cards.

1. Internal Network Cards: Motherboard has a slot for internal network card where it is to be inserted.
2. External Network Cards: External network cards are of two types: Wireless and USB based.

Wireless network card needs to be inserted into the motherboard; however no network cable is

required to connect to the network.

Network Switches: Network switches work similar to routers because they both copy information from

one area of the network to the other. However, network switches contain multiple ports for copying

frames of information from one port to the other.

Network Bridge: A network bridge divides traffic on a local area network by separating the LAN into

several different segments. It is also responsible for filtering data by determining the data destination or

discarding unnecessary data.

Universal Serial Bus (USB): USB card is easy to use and connects via USB port. Computers

automatically detect USB card and can install drivers required to support the USB network card

automatically.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

9

SOFTWARE BASICS

A set of instructions that achieve a single outcome are called program. Many programs functioning together to do tasks

make software. Example, word-processing, web browser etc. There are two categories of software — System

Software, Application Software, Utility software.

 System software: system software acts as interface between hardware and user application.

 To run the hardware parts of the computer and other applications system software is required.

 System software are of 4 types: operating system, Language processor, Device drivers.

Operating system: System software that is responsible for functioning of all hardware parts and their interoperability

to carry tasks is called operating system. OS is booted once computer is switched on. OS manages computers

functions like storage and retrieval of data, scheduling etc..

Language Processor: Function of system software is to convert all instructions into machine understandable

language.

The different computer languages are:

1. Machine level Language

2. Assembly level Language

3. High level Language

1. Machine level Language

 Machine Language is the only language that is directly understood by the computer.

 The program code is written in terms of 1’s and 0’s

 It does not need any translator program.

 We also call it machine code and it is written as strings of 1's (one) and 0’s (zero).

 When this sequence of codes is fed to the computer, it recognizes the codes and converts it in

to electrical signals needed to run it.

 For example, 0010101111000011

Advantages of Machine Language:
1. The advantage is that program of machine language run very fast.

2. No translator is required.

Disadvantages of Machine Language:
1. Programs written in this language are machine dependent

2. It is very difficult to program in machine language. The programmer has to know details of

hardware to write program.

3. The programmer has to remember a lot of codes which are machine specific.

4. It is difficult to debug the program.

5. It is not an easy language for programmers to learn because it is difficult to understand

6. It is efficient for the computer but very inefficient for programmers.

2. Assembly level Language

Assembly level language contains Symbolic English like words to specify instructions .These symbols are

known as mnemonics

Ex: MOV AL, 3

ADD BL

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

10

Advantages of Assembly level Language

1. Programs written in this language are more readable than machine language

Disadvantages of Assembly level Language:

1. Programs cannot be directly executable they require assembler to translate programs to

machine language

2. Programs are machine dependent. A program written for one computer might not run in

other computers with different hardware configuration.

3. High level Language

It is a type of computer language that uses English words plus symbols and numbers to express the

program code.

Advantages of High level Language

1. It is close to human language

2. It is easy to understand

3. It consists of English language like structure

4. It does not depend upon machine

5. It is easy to modify

Disadvantages of High level Language:

 It needs a language translator called compiler to translate program in to machine language.

 It does not execute directly on computer.

Device Drivers:

 System software that controls and monitors functioning of a specific device on computer is called

device driver. Example printer, scanner, speaker etc..

 When a new device is attached you need to install a device driver so that the OS knows how it

needs to be managed.

Application software:

Software that performs a single task and nothing else is application software, it is specialized in their

function, example word processing, multimedia tools etc..

Utility software:

Application software that assists system software in doing work is called utility software. It is actually a

cross between a system software and application software.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

11

BASIC STRUCTURE OF C PROGRAM

 The documentation section consists of a set of comment lines giving the name of the program,

the author and other details, which the programmer would like to use later.

 The link section provides instructions to the compiler to link functions from the system library.

 The definition section defines all symbolic constants.

 There are some variables that are used in more than one function. Such variables are called

global variables and are declared in the global declaration section that is outside of all the

functions. This section also declares all the user-defined functions.

 Every C program must have one main () function section.

o This section contains two parts, declaration part and executable part.

o The declaration part declares all the variables used in the executable part.

o There is at least one statement in the executable part.

o These two parts must appear between the opening and the closing braces.

o The program execution begins at the opening brace and ends at the closing brace.

o All statements in the declaration and executable parts end with a semicolon (;).

EXECUTING A C PROGRAM

Executing a program written in C involves a series of steps. These are:

1. Creating the program;

2. Compiling the program;

3. Linking the program with functions that are needed from the C library; and

4. Executing the program.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

12

The below figure illustrates the process of creating, compiling and executing a C program.

Creating the program

 Once we load the UNIX operating system into the memory, the computer is ready to receive

program.

 The program must be entered into a file.

 The file name can consist of letters, digits and special characters, followed by a dot and a letter c.

 Examples of valid file names are: hello.c , program.c, ebgl.c.

 The file is created with the help of a text editor, either ed or vi. The command for calling the editor

and creating the file is

vi filename

Compiling and Linking

 The source program has been created in a file named program.c.

 The compilation command to achieve this task under UNIX is

cc program.c

 The source program instructions are now translated into a form that is suitable for execution by the

computer.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

13

 The translation is done after examining each instruction for its correctness.

 The translated program is stored on another file with the name program.o. This program is known

as object code.

 Linking is the process of putting together other program files and functions that are required by

the program. For example, if the program is using exp() function, then the object code of this

function should be brought from the math library of the system and linked to the main program.

 The linking is automatically done (if no errors are detected) when the cc command is used.

 If any mistakes in the syntax and semantics of the language are discovered, they are listed out and

the compilation process ends right there.

 The errors should be corrected in the source program with the help of the editor and the

compilation is done again.

 The compiled and linked program is called the executable object code and is stored automatically

in another file named a.out.

Executing the program

 Execution is a simple task.

 The command

./a.out

would load the executable object code into the computer memory and execute the instructions. During

execution, the program may request for some data to be entered through the keyboard.

Creating Your Own Executable File

The linker always assigns the same name a.out. When we compile another program, this file will be

overwritten by the executable object code of the new program. If we want to prevent from happening, we

should rename the file immediately by using the command.

mv a.out name

Multiple Source Files

 To compile and link multiple source program files, we must append all the files names to the cc

command.

cc filename-l.c,………………………………… filename-n.c

These files will be separately compiled into object files called

filename-i.o

and then linked to produce an executable program file a.out as shown below figure.

CHARACTER SET

 Characters that can be used to form words, numbers and expressions depend on the computer on

which the program is run.

 The characters in C are grouped in to the following categories :

1. Letters 2. Digits 3. Special Characters 4. White Spaces

 Compiler ignores white spaces unless they are a part of a string constant.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

14

 The entire character set is as shown in below table

TRIGRAPH CHARACTERS

 ANSI C introduces the concept of “trigraph” sequences to provide a way to enter certain characters

that are not available in some keyboards.

 Each trigraph consists of 3 characters (two question marks followed by another character).

 Ex: if a keyboard does not supports opening square brackets ([), we can still use them using

trigraphs ??(and for closing square brackets (]) we can use ??).

C TOKENS

 In C program smallest individual units are known as C tokens.

 C has 6 types of tokens as shown in below figure.

 C programs are written using these tokens and the syntax of language.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

15

KEYWORDS:

 Keywords are the words which has fixed meaning and that cannot be changed by user. Hence, they

are also called reserved-words.

 They should be written in small letters only

 There are totally 32 keywords

auto double int struct do break else long

switch case enum register if typedef char extern

return union const float static short unsigned continue

default goto for signed while void sizeof volatile

IDENTIFIERS: An identifier is a name given to variables, constants, functions, arrays etc. These are

userdefined names. An identifier can be made up of alphabet, digits and underscores.

Rules:

 The first character in the identifier should be a letter or alphabet(uppercase or lower case) or an _

(underscore)

 No other symbols other than “_” can be used

 The length of an identifier can be up to a maximum of 32 characters

 Keywords cannot be used as identifiers

 White space is not allowed

Valid Identifiers Invalid identifiers Reason for invalidity

max if keyword

pi 3sum Started with numeric digit

Reg_no Sum-of-digits Minus not allowed

SUM3

CONSTANTS: Constants in C refer to the fixed values that do not change during the execution of the

program. C supports several types of constants as shown in figure

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

16

Integer Constants:

 An Integer constant refers to a sequence of digits.

 There are 3 types of integers namely decimal integer,octal integer and hexa decimal integers.

o Decimal Integers: It consist of set of digits,0 through 9,preceded by an optional – or +

sign. Ex: 123,-123, 0, +78, 123456.

o Octal Integers: It consists of any combination of digits from 0 through 7 , with a leading 0.

Ex: 037,0,0435,0551.

o Hexadecimal Integers: Sequence of digits preceded by 0x or 0X is considered as

hexadecimal integers. They may include alphabet A through F or a through f. These

alphabets reprints number 10 through 15. Ex : 0X2,0x9F,0XBCD etc.

Real Constants:

 The numbers containing fractional part are called real constants. Ex: 17.35,0.00086,-0.56,+247.0

etc. These numbers are shown in decimal notation, having a whole number followed by decimal

point and the fractional part.

 Real numbers are also valid when digits before and after decimal points are omitted. Ex: 215. , .95,

+.71, -.5 etc...

 Real number may also be represented in exponential form also. Ex: 215.65 may be written as

2.1565e2 in exponential notation.e2 means multiply by 102.

 General form is

mantissa e exponent

where mantissa is either a real number expressed as decimal or integer. Exponent is an integer with

optional + or – sign. Letter ‘e’ can be written either in lower or upper case.

Examples of Numeric constants

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

17

Single Character Constant :

 A Single character constant contains a single character enclosed within a pair of single quote mark.

Ex : ‘5’,’x’ ‘:’,’ ‘

 Character constants have integer values known as ASCII values.

Ex: printf(“%d”,a); will print the ASCII value of ‘a’. printf(“%c”,97); will print the letter a, as 97

is the ASCII value of ‘a’.

String Constants:

 A string constant is a sequence of characters enclosed in double quotes. Characters may be letters,

numbers and blank space. Ex: “HELLO!”,”5+3”,”?...!” etc ..

 A character constant (ex:’X’) is not equivalent to the single character string (ex: “x”).

Backslash Character Constant:

 C supports some special backslash constants that are used in output functions

 Each backslash represents one character, although they consist of two.

 These combination of characters are called escape sequences.

 Ex :

VARIABLE: A variable is an identifier. It can change its value for each execution of the program. All

variables must be declared before their usage.

 Ex. sum –is a variable stores the result of addition of 2 or more numbers.

 A variable considered with its type, its value and its address.

Rules to be followed to use variables

1. The variable name must begin with a letter and can have digits and underscore

2. A variable name can be or 32 characters

3. keywords cannot be used as variable names

4. White spaces cannot be used.

Some examples are as given below: Value3, S1, ph_value, I_rate

Invalid variables names are 23rd, 355, (rate)

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

18

DECLARATION OF VARIABLES: assigning memory to a variable is known as declaration of

variable.

Primary Type Declaration: All C variables must be declared as follows:-

datatype variable1, varaible2…;

Ex. int i ; Here i is a variable which can hold integer type data

 Ex. char a, b, ch ; a, b, ch are character type data, they hold one character

User-Defined Type Declaration:

 C supports a feature known as type definition that allows users to define an identifier that would

represent an existing data type.

 User defined data types can be used to declare variable

typedef type identifier ;

where type refers to existing data type and identifier refers to new name given to the data type

 Ex: typedef int units;

 typedef float marks;

here units symbolizes int and marks symbolizes float.

Assigning values to Variables: The method of giving values to the variables is called assigning.

Syntax: - datatype var-name = value;

Ex: char ch = 'a' ; //a is stored in ch

 double d = 12.2323 ; // 12.2323 is stored in d

 int j = 20 ; //20 is stored in j

Declaring variable as constant:

 The values of certain variables to remain constant during execution of program.

 We can do this by declaring the variable with qualifier const during the time of initialization.

 Ex: const int class_size = 40 ; This tells the compiler that value of int variable class_size must not

be modified in the program.

Declaring a variable as volatile:

 ANSI C defines another qualifier volatile that could be used to tell explicitly the compiler that a

variable’s value may be changed at any time by some external sources.

 Ex: volatile int date

DATA TYPES

 C Language is rich in its data types

 Storage representations and machine instructions to handle constants differ from machine to

machine.

 Verity of data types allows programmers to select the type appropriate to the needs of application

as well as the machine.

 ANSI C supports 3 classes of data types :

1. Primary (or functional) data type

2. Derived data types

3. User-defined data types

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

19

 All C compilers support 5 fundamental data types, namely integer (int), character (char) , floating

point (float) , double-precision floating point (double) and void. Many of them also offer extended

data types such as long int and long double.

 Ranges of 4 basic type of data types are as shown in table.

Integer Types:

 Integers are whole numbers supported by a particular machine

 Usually integer occupies one word of storage, since word sizes varies from machine to machine(16

bi or 32 bit).size of integer is limed to -32768 to +32767.similarly for 32 bit word length integer

range varies from -2.147,483,648 to 2,147,483,647.

 C has 3 classes of integer storage classes: short int , int , and long int both in signed and unsigned

forms.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

20

Size and Range of Data types on a 16-bit Machine

Floating point types:

 Floating point numbers are defined in C by keyword float and are stored in 32 bits.

 When the accuracy provided by float is not sufficient, the type double is used and it uses 64 bits

giving a precision of 14 digits.

 Long double can be used which uses 80 bits.

Void Types:

 The void type has no value and is usually used to specify the type of functions.

 The type of function is said to be void when it does not return any value to the calling function.

Character Types:

 A single character can be defined as character (char) type data and is usually stored in 8 bits of

internal storage.

 Signed characters have values from -128 to 127 and unsigned from 0 to 255.

INPUT-OUTPUT FUNCTIONS:

These functions are used to input(read) data into variables or output (write) data of the variables.

1. Reading data from keyboard: The input functions that accepts data from the keyboard and stores

data into variables.

scanf(): The only formatted input function is scanf. It is used for formatted input. The general syntax of

scanf function is

scanf(“formatspecifier/s”, &variable1,&variable2..)

 The scanf function takes format specifiers, this specifies the datatype of the variable , format

sepcifiers are enclosed within “ “. The different format specifiers are

%c for character data type

%d for integer data type

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

21

%f for float data type

 And a comma follows variable or variable list.& is used with all variables to indicate the reading

value is stored at the address where the variable is stored in the memory.

Ex: int i, a ;

char b ;

float c ;

scanf("%d", &i) ;

scanf("%d %c %f", &a, &b, &c

2.Writing data on to the Monitor: This function is similar to the scanf function except that it is used

for formatted output.

The only formatted output function is printf. It is used for formatted output. The general syntax of scanf

function is

printf(“formatspecifier/s”, variable1, variable2..)

 The printf function takes format specifiers, this specifies the datatype of the variable , format

sepcifiers are enclosed within “ “. The different specifiers are as specified with scanf and

 A comma follows variable or variable list. & is not used

For Example :-

int i = 15 ;

float f = 13.3576 ;

printf("%3d", i) ; /* prints 15 with 3 white spaces */

printf("%6.2f", f) ; /* prints "_13.36" which has a total width of 6 and displays 2 decimal

places */

Operators: An operators is a symbol that specifies the operates on various types of operands. An

expression has operands and operators.

Ex. s=a+b; here s,a,b are operands and + and = are operators.

The values upon which the operator operates are called operands. The operators in C are classified into

following types based on number of operands

1. Unary operators

2. Binary operators

1. Unary operators: These are the operators that operate on only one operand. The following are unary

operators in C.

a. + unary plus operator : indicates +ve value. Ex: +7,+23.

b. - unary minus operator : indicates -ve value. Ex: -7,-23.

c. Increment operator:

 This operator makes the value of the variable to be increment by 1.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

22

 It is indicated as ++

 Two types of increment are pre increment and post increment

Ex. int a=10;

 a++; is equivalent to a=10

a=a+1(10+1) makes the value of a to be incremented by 1 and a becomes 11

 ++a; is equivalent to a=a+1 (10+1)

a=11 makes the value of a to be incremented by 1 and a becomes 11

d. Decrement operator:

 This operator makes the value of the variable to be decrement by 1.

 It is indicated as --

 Two types of decrement are pre decrement and post decrement

Ex. 1. int a=10;

 a--; is equivalent to a=10

a=a-1 (10-1) makes the value of a to be decremented by 1 and a becomes 9

 --a; to a=a+1 (10-1)

a=9 makes the value of a to be decremented by 1 and a becomes 9

e. ! logical complement operator: Inverts the Boolean value(true to false and false to true).

2. Binary Operators:

These operators act on 2 operands. The different types of binary operators are :

1. Arithmetic Operators [+,-,*,/,%]

2. Relational Operators [>,<,>=,<=,==,!=]

3. Logical Operators [&&,||,!]

4. Assignment Operators [=]

5. Compound shorthand assignment operators [+=,-=,*=,/=,%=]

6. Bitwise Operators [&,|,^,~]

7. Conditional operators [? :]

8. Shift operators [>>,<<]

9. Special operators [(,),sizeof, . And ->, * and &]

1. Arithmetic operators:

 They used to perform arithmetic operations and are +,-, *, /, %

 Ex. sum=a+b, sub=a-b, mul=a*b, div=a/b

2. Relational Operators:

 The relational operators are used to test the relation between two entities.

 The relational operators return true or false value depending upon the condition

 They also return zero or non zero values. 0 values is taken as false and non-zero is taken as

true.

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

23

 These operators allow to compare two values, If they are equal, unequal, if one is greater to

other.

 The different relational operators in C are <, >, <=, >=, !=, ==

Ex. 1. a=5, b=3 a==b is False

 2. a=3, b=3 a==b is True

 3. a=5, b=6 a>b is false

3. Logical Operators:

 We can connect the results of multiple expressions or logical operations by using logical

operators.

 The logical operators are !(NOT), &&(AND), ||(OR)

 The negation takes only one operand and returns a false value if the operand is true and

vice versa

Ex. a=2, b=3 !(a>b) result is true, because a>b ,2>3 results into false ,

 the negation of false is true.

The AND operator returns a value 1 if both expressions are true

Ex. a=4, b=5, and c=7 (a>b) && (a>c) is false because both a>b and a>c are false

The OR operator returns 1 or true if either one of the expression is true.

Ex. (a>b) ||(c>b) is true because c>b is true

4. Assignment Operator: This operator is used to assign a value to a variable. Which is ‘ = ‘.The right

side result or value will be assigned to the left side variable of the operator

 Ex. i=10; assigns the value 10 to i.

5. Compound shorthand assignment operators Operators

 Many C operators can be combined with the assignment operator as shorthand notation

For Example :-

x = x + 10 ; can be replaced by x += 10 ;

 x = x - 10 ; can be replaced by x -= 10 ;

 x = x * 10 ; can be replaced by x *= 10 ;

 x = x / 10 ; can be replaced by x /= 10 ;

 x = x % 10 ; can be replaced by x %= 10 ;

6. Bit-wise operators: The bit wise operator operates on a single bit. There are 4 bitwise operators in C

& (AND) operator: this compares each bit of the first operand with the corresponding bit of the second

operand ,. If both bits are 1 , then the corresponding bit is set to 1 else it is set to 0.

Ex: 0 0 0 0 1 0 1 0

 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0

Op1 Op2 result

0 0 0

0 1 0

1 0 0

1 1 1

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

24

 | (OR) operator: this operator compares each bit of the first operand with the corresponding bit of the

second operand , if either of the bit is

Ex: 0 0 0 0 1 0 1 0

0 0 0 0 0 1 1 0

 0 0 0 0 1 1 1 0

 Bitwise X-OR (^) operator : If the corresponding bit positions in both the operands are different , then

ex-OR results in 1 else 0.

Ex: 0 0 0 0 1 0 1 0

0 0 0 0 0 1 1 0

0 0 0 0 1 1 0 0

The complement operator ~: The complement operator inverts the value of each bit of the operand.if the

operand bit is 1 the result is 0 and if the operand bit is 0 the result is 1.

 Ex: 0 0 0 0 0 1 1 0

 1 1 1 1 1 0 0 1

7. Conditional operator: The combination of ?and : is called as Conditional operator denoted by (? :). It

is also called as ternary operator since it takes 3 operands.

Syntax : expression1? expression2: expression 3

first expression1 is evaluated, if it is true then expression2 is evaluated, expression1 is the result of the

expression and if expression1 is false then expression3 is evaluated and expression3 is the result of the

expression.

Ex: a=30, b=50,result;

result=a>b?a:b; greatest of a and b and assigns it to result*/

8. Shift operators: A shift operator performs bit manipulation on data by shifting the bits of its operands

right or left.

Left Shift operator(<<): This operator is used to shift each bit positions towards left. The blanks that are

created on the left will be filled by zero

 0 is ignored--

Blank space is filled by 0

Op1 Op2 result

0 0 0

0 1 1

1 0 1

1 1 1

Op1 Op2 result

0 0 0

0 1 1

1 0 1

1 1 0

Op1 result

0 0

1 1

0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

25

Right Shift operator: This operator is used to shift each bit positions towards right. The blanks that are

created on the left will be filled by zero.

 0 is ignored

 Blank space is filled by 0-- 

9. Special Operators:

 Comma operator: It is used to combine multiple expressions into a single expression.

 Ex. x=(a=12,b=22,a+b); the value of the rightmost expression 34 is assigned to x.

 Sizeof()-operator-it is used to determine the size of the operand

 Ex. int x=2000; sizeof(x)); /*x=2 as it is integer and takes 2 bytes */

 Member selection operators(. and ->)

 Pointer operators(* and &)

TYPE CONVERSION:

The process of converting data from one data type to another data type is called type conversion.

Two types of conversion are

1. Implicit conversion

2. Explicit conversion

1. Implicit conversion: The compiler itself converts data from one type to another and the conversion

takes from lower datatype to higher datatype. This conversion is shown below

char int long int float double

Ex. 1. int y=5;

 float x;

 x=y; gives the result x=5.0, integer 5 will be automatically converted to float

2. Explicit conversion: The user forcefully converts one data type to another data type is called explicit

conversion. The data conversion from higher data type to lower data type is possible by using explicit

conversion.

Ex.

float y=5.1;

int x;

x=(int)y; gives the result x=5, float 5 .1 will be forcefully converted to int

EXPRESSIONS:

 An expression is combination of operands and operator that reduces to a single value.

 Ex. C=A+B is a mathematical expression with A,B and C as operands and + and = are

operators

 The expressions are evaluated according to the priority and associativity.

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

26

Conversion of mathematical expressions to C –expressions: The mathematical expressions are to be

written in C-program notation while programming

MATHEMATICAL EXPRESSION C-REPRESENTAITON

A=
5x+3x

𝑎+𝑏
 A=(5*x+3*y)/(a+b)

B =
√s(s − a)(s − b)(s − c)

2a
 B=sqrt(s*(s-a)*(s-b)*(s-c))/(2*a)

C = 𝑒 |𝑥+𝑦−10| C=exp(abs(x+y-10))

D = 𝑋25 + 𝑌35 D=pow(x,25)+pow(x,35)

E =
𝑒√𝑥 + 𝑒√𝑦

xsin√ y
 E=(exp(sqrt(x))+exp(sqrt(y)))/(x*sin(sqrt(y)))

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 X=(-b+sqrt(b*b-4*a*c))/(2*a)

Precedence and Associativity: In C programming the expressions are evaluated according to

precedence and associativity.

Precedence: The priority in which the operator is evaluated in an expression are called precedence or

hierarchy of operators.

The below table shows the operator’s precedence.

Associatively: associativity of an operator is a property that determines the order of evaluation of a

operator in an expression.

Two types of associativity are:

 Left Associativity: meaning the operators are evaluated from the left to right.

Ex: a+b;

 Right Associativity: meaning the operators are evaluated from the right to left.

Ex: x=a+b;

Operators Order of

precedence

Associativity

Brackets [] or () L R

Unary ++, -- ! sizeof R L

Arithmetic * /% L R

Arithmetic - + L R

Shift << >> L R

Relational < >= <= > L R

Bitwise ^ | L R

Logical && || L R

Conditional ? : R L

Assignment =, +=,-=,*= R L

Comma operator , L R

C PROGRAMMING FOR PROBLEM SOLVING 18CPS13/23

27

ASSIGNMENT QUESTIONS:

1. Explain in brief

a. “History of C”.

b. Importance of C

c. Generation types

d. Computer Types

2. What is a Computer? Write a Block diagram of a computer and explain in brief.

3. What is Memory? Explain different types of memory.

4. Explain the steps involved for executing a C program.

5. Explain the structure of C program with an example.

6. What are data types? Mention the different data types supported by C Language, giving an

example to each.
7. Define & explain with an example

a. Variable d. Precedence

b. Constant e. Bit-Wise Operator

c. Associativity f. Conditional Operator

8. Write a program in C and draw flowchart to find

a. The area and perimeter of a circle.

b. Addition of 3 numbers and average of it

c. Simple Interest

9. What is a token? What are different types of tokens available in C language? Explain.

10. Explain different types of ports in a computer.

11. List and explain different types of input and output devices.

12. Write a note on

a. Computer in a network

b. Network hardware

c. Router

13. Explain in brief language processor and character set.

14. What is a variable? Explain the declaration and initialization of variables.Write C equivalent

expression for the following.

a. C = e|x+y-10| b. E =
𝑒√𝑥+𝑒√𝑦

xsin√ y
 c. D = 𝑋25 + 𝑌35

d. B =
√s(s−a)(s−b)(s−c)

2a

15. What is type-conversions? Explain two types of type conversion along with an example.

16. Explain I/O functions.

17. What is an operator? Explain the arithmetic, relational, logical, and assignment operators in C

language.

18. What is the value of x in the following code segments? Justify your answer.

i. int a,b; ii. int a,b;

float x; float x;

 a=4; a=4;

 b=5; b=5;

 x=b/a; x=(float)b/a;

**

Module -2 Branching and Looping

HMSIT Page 1

Module 2

Branching and Looping

Managing Input and output operations. Conditional Branching and Loops. Example

programs, Finding roots of a quadratic equation, computation of binomial

coefficients, plotting of Pascal’s triangle.

MANAGING INPUT-OUTPUT OPERATIONS:

These functions are used to input (read) data into variables or output (write) data of the variables.

The different types of I/O statements are

1. Formatted I/O: The functions that use format specifiers are called as formatted I/O

function.

2. Unformatted I/O: The functions that does not use format specifiers are called as

unformatted I/O function.

1. Formatted Input functions: The input functions that accepts data from the keyboard and

stores data into variables.

scanf(): The only formatted input function is scanf. It is used for formatted input. The general

syntax of scanf function is

scanf (“format specifier/s”, &variable1,&variable2..)

 The scanf function takes format specifiers, this specifies the datatype of the variable ,

format specifiers are enclosed within “ “. The different format specifiers are

%c for character data type

%d for integer data type

%f for float data type

%e (%E) float or double exponential format

%o int unsigned octal value

%s array of char sequence or string

%u int unsigned decimal

%x (%X) int unsigned hex value

 And a comma follows variable or variable list.& is used with all variables to indicate the

reading value is stored at the address where the variable is stored in the memory.

Ex: int i, a ;

char b ;

float c ;

scanf("%d", &i) ;

scanf("%d %c %f", &a, &b, &c);/* e.g. typing 10 x 1.234 stores 10 in a, x in b

Module -2 Branching and Looping

HMSIT Page 2

and 1.234 in c*/

scanf("%d:%c", &i, &c) ; /* 10 : x stores 10 in i after : x is stored in c */

printf():This function is similar to the scanf function except that it is used for formatted output.

The format specifiers have the same meaning as for printf() and the space or the newline(\n or \t)

characters can be used as delimiters between different inputs.The general syntax of printf

function is

printf(“formatspecifier/s”, variable1, variable2..)

 The printf function takes format specifiers, this specifies the datatype of the variable ,

format sepcifiers are enclosed within “ “. The different specifiers are as specified with

scanf and

 A comma follows variable or variable list. & is not used

For Example :-

int i = 15 ;

float f = 13.3576 ;

printf("%3d", i) ; /* prints 15 with 3 white spaces */

printf("%6.2f", f) ; /* prints "_13.36" which has a total width of 6 and displays 2

decimal places */

2.Unformatted I/O

1.Getch(),getche(),getchar() and putchar(): Getch(),getche(),getchar() functions are used to

input single character. They require no format specifier

 Getch (): reads a single character from the keyboard and stores into a character variables. It

doesn’t display the character on the screen and return the key pressed.

Syntax: <character variable> = getch() ;

Ex: char ch1 ;

ch1 = getch() ;

 Getche ():reads a single character from the keyboard and stores into a character variables.

It displays the character on the screen and return the key pressed.

Syntax: <character variable> = getche() ;

Ex: char ch1;

ch1 = getche ();

 getchar(): reads a single character from the keyboard and stores into a character variables.

It accepts the input until the carriage returns is entered.

syntax: <character variable> = getchar() ;

Ex: char ch1 ;

ch1 = getchar() ;

Module -2 Branching and Looping

HMSIT Page 3

 putchar() displays a character on the standard output device i.e. on to the screen.

 Ex :-ch2 = 'a' ;

 putchar(ch1) ; or printf(“%c”, ch1);

 putchar(ch2);

2. gets () and puts():gets() accepts string including spaces from the standard Input device

(keyboard). gets() stops reading character from keyboard only when the enter key is pressed

Syntax: gets(variable_name);

Ex: gets(str);

puts() displays a single / paragraph of text to the standard output device.

Syntax: puts(variable_name);

Ex: puts(str);

CONDITIONAL BRANCHING AND LOOPS

Statements: single C- language instruction is called a statement.

Control statements: statements normally execute sequentially. “The control statements will

define the order in which individual statements or instructions of a program are executed or

evaluated.

The control structures are divided into the following categories

 Conditional statements or selection.

 Looping or Iterative statements

 Jumping statements

Conditional Statements: The conditional statement in a program allows the user to select one or

more execution paths in a program. If the conditional expression results true then the specified

statements will be executed otherwise(if the result is false) the statements are bypassed

The different types of conditional statements supported by C are

o If –statement (single selection)

o If-else statement (two way selection)

o Nested –if statement

o If-else ladder (multiway selection)

o Switch statement (Multiway selection)

o Nested switch statements

Module -2 Branching and Looping

HMSIT Page 4

The if-statement:

Syntax: if(expression) flow chart:

 false

{

 Statement 1; True False

 Statement 2;

 }

 Next statement;

 If statement is a single selection/decision statement .

 When the expression inside if is evaluated to true then the statement1, statement 2 will be

executed. If it is false then the control moves to next statement.

Ex. main()

{

int age;

printf(“enter the age”);

scanf(“%d”,&age);

if(age<18)

printf(“You are eligible to vote”);

}

If-else statement:

 If –else statement is used to choose either one alternative among two set of alternatives. i.e when

the expression is evaluated to false, then if –else statement is used.

 If the expression is evaluated to true then statements 1, 2 will be executed and statement a, b will

not execute

 If the expression is evaluated to false, and the statements a, b will be executed. And statements 1, 2

will not execute

 It is also called two way decision statement.. the syntax is as shown,

Condition

Statement 1

Statement 2

Next statement

Module -2 Branching and Looping

HMSIT Page 5

Syntax:

 if(condition) True false

{ Statement1;

 Statement 2;

}

else

{ Statement a;

 Statement b;

}

Ex. 1.Program to find greatest of two numbers

 main()

 {

int a, b;

printf(“Enter two numbers”);

scanf(“%d%d”,&a,&b);

if(a>b)

printf(“a is greater”);

else

printf(“b is greater”);

}

2.Program to check whether the given number is odd or even

main()

{

int n;

printf(“Enter the number”);

scanf(“%d”,&n);

if(n%2==0)

printf(“n is even number”);

else

printf(“n is odd number”);

}

Nested-if statement

 Nested if means one if statement contains another if statement.

 When the outer if statement is evaluated to be true the control of a program moves into the inner

if statement.

 The syntax of the if statement is as described below,

Next statement

Cond

i-

tion

expr

en Statement1

11111

Statement2

Statement a

a11

Statement b

Module -2 Branching and Looping

HMSIT Page 6

 Syntax: flow chart:

if (conditional expression 1)

 if(conditional expression 2) True

 Statement 1;

 else

 Statement 2; False

 else False True

 statement 3;

Ex. if(income>20000)

 if(sex=’m’)

 tax=income*10.0;

 else

 tax=0;

in the above code, tax is evaluated only for male employees,

The if -else ladder

 An if –else ladder is a special case of nested if statements where nesting take place only in the else

part.

 It is used when an action has to be selected based on range of values, this statement is used. So it is

called multiway selection statement.

Ex. Quadratic equation

Syntax: flow chart:

if(condition) true

{ Statement1;

 }
else if(condition-2) False

{statement 2; true

}

 else if(Condition-3)

{ Statement 3; false

} true :

else if(condition n)

{

statement n; false

}

 true

Next statement;

Cond-1 Statement 1

11111

Statement 2

11111

Statement 3

11111

Statement n

11111

Cond-

2

Cond

-3

Cond

-n

Next statement

Cond-1

Cond-2

Statement 3

Statement 2 Statement 1

Next Statement

Module -2 Branching and Looping

HMSIT Page 7

Program to find quadratic equation

#include<stdio.h>

#include<math.h>

void main()

{

 int a,b,c;

 float root1, root2, realp, imgp, disc;

 printf("Enter three co-efficients of the quadratic equation\n");

 scanf("%d%d%d",&a,&b,&c);

 if(a*b*c==0)

 {

 printf("\nRoots can not be found");

 getch();

 exit(0);

 }

 disc = b*b-4*a*c;

 if(disc==0)

 {

 printf("\nRoots are equal\n");

 root1 = root2 =-b/(2.0*a);

 printf("\nRoot1 = Root2 = %.2f", root1);

 }

 else if(disc>0)

 {

 printf("\nRoots are real and distinct");

 root1 = (-b + sqrt(disc))/(2*a);

 root2 = (-b - sqrt(disc))/(2*a);

 printf("\nRoot1 = %.2f", root1);

 printf("\nRoot2 = %.2f", root2);

 }

 else

 {

 printf("\nRoots are imaginary");

 realp = -b/(2.0*a);

 imgp = sqrt(fabs(disc))/(2*a);

 printf("\nRoot1 = %.2f + i %.2f",realp, imgp);

 printf("\nRoot2 = %.2f - i %.2f",realp, imgp);

 }

}

Module -2 Branching and Looping

HMSIT Page 8

The switch statement

 The switch statement is a control statement used to make a selection between many

alternatives.

 Based on the choice (integer or character value) the control is transferred to a particular

case value.

 Switch cannot be used when the selection is based on a range of values.

 The syntax of switch is as described below,

Flow chart

Syntax:

switch(choice/expression)

{

case value1:

Block1;

break;

case value 2:

Block2;

break;

case value 3:block3;

break;

case value n:

default:

Block d;

}

Program to simulate the functions of a simple calculator

#include <stdio.h>

int main()

{

int num1,num2;

float result;

char choice; //to store operator choice

printf("Enter first number: ");

scanf("%d",&num1);

printf("Enter second number: ");

scanf("%d",&num2);

printf("Choose operation to perform (+,-,*,/,%): ");

scanf(" %c",&choice);

result=0;

switch(choice)

 {

 case '+':

 result=num1+num2;

 break;

 case '-':

Module -2 Branching and Looping

HMSIT Page 9

 result=num1-num2;

 break;

 case '*':

 result=num1*num2;

 break;

 case '/':

 result=(float)num1/(float)num2;

 break;

 case '%':

 result=num1%num2;

 break;

 default:

 printf("Invalid operation.\n");

 }

 printf("Result: %d %c %d = %f\n",num1,ch,num2,result);

 return 0;

}

Looping or Repetitive statements (Counter control Loops)

 These are the statements that helps to execute a set of statements repeatedly.

 The statements within a loop may be executed for a fixed number of times or until

condition fails.

The different types of looping statements in C language are, while, do-while and for

while loop:

 It executes set of statements repeatedly based on some condition untill the condition fails.

 It is called condition controlled or event controlled loop.

 It is a pre tested loop statement, where the condition is checked before entering into the

loop.

 The syntax for while loop is as shown below, it starts with a keyword while, the expression

after the keyword while must be enclosed within parentheses. It evaluates to true or false.

 If the expression evaluates to true the body of the loop is executed.

 After executing the body of the loop, control goes back to beginning of the while –

statement and expression is again evaluated to true of false.

 The body of the while loop is repeatedly executed as long as the expression evaluates to

true. Once this expression becomes false the control comes out of the loop.

Module -2 Branching and Looping

HMSIT Page 10

Syntax: flow chart

while(expression) false

{

statement 1;

statement 2; //body of the loop true

}
next statement;

Program to reverse a given integer number.

#include<stdio.h>

#include<conio.h>

void main()

{

 int temp, n, rev=0;

 clrscr();

 printf("\nEnter the value of n:");

 scanf("%d", &n);

 temp=n;

 while (n>0)

 {

 rev = rev*10+n%10;

 n = n/10;

 }

 printf("\nThe Reverse of the number %d = %d", temp, rev);

 if (temp == rev)

 printf("\n It is a Palindrome");

 else

 printf("\n It is not a Palindrome");

}

Statement 1

Statement 2

While(e

xpressio

n)

Next statement

Module -2 Branching and Looping

HMSIT Page 11

do-while loop:

 do-while is similar to while loop, this is used when we do not know exactly how many

times a set of statements have to be repeated it is called post tested loop.

 Here the body of the loop executed first then the expression is evaluated.

 If the expression evaluates to true, then the loop repeats, otherwise, it terminates.

do

{ flow chart

statement 1;ststemetn 2;

body of the loop

}while(expression);

 true

 False

Difference between while-loop and do-while loop:

while loop do-while loop

 syntax syntax

1.while() 1. do

 { {

 Stat-1; stat-1;

 Stat-2 stat-2;

 … ….

 … …

 Stat-3; stat-3

 } }while(exp);

2. It is top-testing 2. It is bottom testing

3. It is pre tested loop 3. It is post tested loop

4. if, while evaluates to false no 4. Even if,while evaluates to false

 Statements of loop will execute the loop statements evaluates at least once

5.while loop ends with no ; 5. do while ends with ;

6.while has no do word 6. do while loop has the reserve word do

7.It is entry controlled loop 7. It is exit controlled loop

8. Ex. to print 1, 2,3….n the code is as follows 8. Ex. to print 1, 2,3….n the code is as follows

 while(i<=n) do

{ {

printf(“\n%d”,i); printf(“\n%d”,i);

 i++; i++;

} }while(i<=n);

Statement 1

Statement 2

expressio

n

Next statement

Module -2 Branching and Looping

HMSIT Page 12

for loop:
 for loop is also called counter controlled loop .since it is required to specify how many times a set

of statements have to be executed at the beginning .

 Once the specified number of times the loop executed the program control comes out of the loop.

The syntax of for loop is,

syntax:

for(initialization; conditional expression; post expression)

{

 simple or compound statement;

}

 The initialization part initializes the variable with a value. It executes only once.

 This is followed by conditional expression. If the conditional expression evaluates to false,

the program control comes to the statement next to the for loop.

 If the conditional expression evaluates to true then the body of the for loop is evaluates.

 The post expression is used to increment or decrement a counter variable controlling a

loop

 The for loop continues to execute until the conditional expression evaluates to false.

 The body of for loop may contain a single statement or compound statement.

Program to find factorial of a given number

void main()

{

int n, f=1,i;

printf(“enter the number \n”);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

f=f*i;

printf(“\n the factorial of %d is %d\n”,n, f);

}

Program to print 1, 2,3….n

void main()

{

int n,i;

printf(“Enter the number”);

scanf(“%d”,&n);

for(i=1;i<=n;i++)

 {

 printf(“\n%d”,i);

 }

 }

Module -2 Branching and Looping

HMSIT Page 13

Un-conditional branch statements (jump statements):

 These are the statements used to transfer the control from one statement to other statement

in the program without any condition

 They are goto, break, continue

Jumping out of a loop:

Goto statement : using this statement control can be transferred from one statement to the

specified statement without any condition,

The syntax of goto is

 goto label; label is any identifier

Ex. void main ()

{

Printf (“1”);

Printf (“2”);

Printf (“3”); goto end;

Printf (“4”);

Printf (“5”);

end: printf(“End”);

}

break statements:

 A break statement is jump statement which can be used in switch statement and loops.

 The break statement in switch causes the control to terminate switch statement.

 If break appears in loop. The control comes out of the loop.

 The statements following break are skipped and the execution continues from that point

Ex.

for(i=1;i<=5;i++)

{

if(i==3) or

break;

printf(“%d”,i);

}

for(i=1;i<5;i++)

{

printf(“%d” i);

break;

printf(“skipped statement”);

}

The output of this program is 1,2 The output of this program is 1

Skipping Part of a loop

Continue statement:

 This statement is used only in the loop to terminate the current iteration.

 When the continue statement is executed, the statements following continue are skipped

and but the execution of the iteration still continues.

Module -2 Branching and Looping

HMSIT Page 14

Ex.

for(i=1;i<=5;i++)

{

if(i==3) or

continue;

printf(“%d”,i);

}

Output: The output of this program is 1,2,4,5

for(i=1;i<5;i++){

printf(“%d” i);

continue;

printf(“skipped statement”);

}

Output: The output of this program is 1,2,3,4

COMPUTATION OF BINOMIAL COEFFICIENTS

Problem: Binomial coefficients are used in the study of binomial distributions and reliability of

multicomponent redundant systems. It is given by,

A table of binomial coefficients is required to determine the binomial coefficient for any set of m

and x.

Problem Analysis: The binomial coefficient can be recursively calculated as follows:

That is the binomial coefficient is one when either x is zero or m is zero. The program below

prints the table of binomial coefficients for m = 10. The program employs one do loop and one

while loop.

Program

 #define MAX 10

main()

{

int m, x, binom;

printf (“m x").

for (m=0;m<=10;++m)

 printf("%4d", m);

Module -2 Branching and Looping

HMSIT Page 15

printf("\n-----------------------\n”);

m = 0;

do

{

printf("%2d ", m);

x = 0; binom = l;

while (x <= m) ’

{

if(m == 0 || x == 0)

printf("%4d", binom);

else

{

binom = binom * (m - x + 1)/x;

printf("%4d", binom);

}

x=x+1;

}

printf("\n");

m = m + 1;

}

while (m <= MAX);

printf("--“);

}

Program to print binomial coefficient table

Module -2 Branching and Looping

HMSIT Page 16

PLOTTING OF PASCALS TRIANGLE

There 2 different source codes in C program for Pascal’s triangle, one utilizing function

and the other without using function. Both of these program codes generate Pascal’s

Triangle as per the number of row entered by the user.

The construction of the triangular array in Pascals triangle is related to the binomial coefficients by
Pascals rule.

How to Build Pascal’s Triangle?

 In Pascals triangle all the numbers outside the triangle are ‘0’s’ , to build the triangle start

with a ‘1’ at the top, continue putting numbers below in a triangular pattern so as to form a

triangular array.

 So, each new number added below the top ‘1’ is just the sum of two numbers above, except

for the edge which are all ‘1’s’

This can be summarized as:

0 row =1

1 row = (0+1), (1+0) = 1, 1

2 row = (0+1), (l + 1), (1+0) = 1, 2, 1

3 row = (0+1), (1+2), (2+1), (1+0) = 1, 3,3, 1

4 row = (0+1), (1+3), (3+3), (3+1), (1+0) = 1, 4, 6, 4, 1

Properties of Pascal’s Triangle

Module -2 Branching and Looping

HMSIT Page 17

 The sum of all the elements of a row is twice the sum of all the elements of its preceding

row. For example, sum of second row is 1+1= 2, and that of first is 1. Again, the sum of

third row is 1+2+1 =4, and that of second row is 1+1 =2, and so on. This major property is

utilized to write the code in C program for Pascal s triangle.

 The sequence of the product of each element is related to the base of the natural logarithm

e.

 The left and the right edges of Pascal’s triangle are filled with “1” s only.

 All the numbers outside the triangle are “0”s.

 The diagonals next to the edge diagonals contain natural numbers (1,2,3,4,….) in order.

 The sum of the squares of the numbers of row “n” equals the middle number of row “2n”.

#include<stdio.h>

int main()

{

int num, rows, cols,spaces,ans;

printf(“Enter number of rows “);

scanf(“%d”, &num);

for(rows=0; rows<num; rows++)

{

for(spaces=1 ;spaces<=num-rows;spaces++)

printf(“ “); // printf(“**”);

for(cols=0;cols<=rows; cols++)

{

if(cols=0 || rows=0)

ans=l;

else

ans= ans*(rows-cols+l)/cols; printf(“%4d”,ans);

}

printf(“\n”);

}

return 0;

}

Module -2 Branching and Looping

HMSIT Page 18

ASSIGNMENT QUESTIONS

1. What is two way selection statements? Explain if, if-else, nested if, if-else if and cascaded if

else(if else ladder) with Examples and syntax

2. Write a program that takes 3 co-efficient a, b ,c of a quadratic equation ax2+bx+c=0 and

compute all possible roots and print with the appropriate messages.

3. Explain Switch statement with example

4. Explain jumping statements with example.

5. What is a loop? Explain the different looping statements in C language.

6. Write a program,

 To calculate square root of a number without using library function.

 To read year as input and to find whether it is a leap year or not.

 To reverse a given number and to check whether it is a palindrome or not.

 C program find factorial of a number.

 To develop a simple calculator for 2 operands using switch

 C program to find greatest of three numbers.

7. Differentiate between while and do-while statements.

8. Explain in brief binomial co-efficient with a C program.

9. Explain in brief Plotting of Pascals Triangle with a C program.

8. Write a program to calculate sin(x) value using the Taylor’s series

sin(x) = 𝑥 −
𝑥3

3!
+
𝑥5

5!
− ⋯

Module -2 Branching and Looping

HMSIT Page 19

CPS Module 3 Arrays

HMSIT 1

Arrays: Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms: Searching and Sorting

Algorithms (Linear search, Binary search, Bubble sort and Selection sort).

Arrays:
 An array is a collection of similar set of elements.

 An array is a collection of same type of values stored in consecutive memory locations.

 The values in the array are referred by a name,(which is the name of the array) and index, this

indicates the position of the value in the array.

 The different types of arrays are

1. Single –dimensional array.

2. Two-dimensional array
3. Multidimensional arrays.

SINGLE DIMENSIONAL ARRAYS:

A single dimensional array is a linear list of related data items with a single subscript. In memory all the

data items are stored in contiguous memory locations one after the other.

 Declaring one dimensional array: Declaration of array is similar as declaring ordinary variables in

program. An array is to be declare before using it. Array is declared by using the following syntax,

Syntax: Data_type array_name[size];

In the above line, datatype represents the data type of the array to be declared, array_name represents the

name of the array and size represents the number of values to be sorted in the array.

Ex: int a [10];

in this example, a is the name of the array contains 10 elements, which are indexed 0 to 9. Which contain

10 integer values

The elements in one dimensional array are stored starting at the index zero to one less than the size of the

array. The total amount of memory that can be allotted to the array can be calculated using the formula

Total memory=size*[sizeof[data-type)]

 = 10*2 bytes=20 bytes.

Initializing one dimensional array: initializing array is similar to initializing ordinary variables.

The various types of array initialization are,

 One by one initialization

 Initializing in a single statement.

 Initializing using for loop and scanf ().

1. One by one initialization:

We can initialize the elements of the array one by one.

Ex: Int a[5];

a [0]=10; a [1]=20; a [2]=30; a [3]=40; a [4]=50;

2. Initializing in a single statement: We can initialize all the elements of the array at the time of

declaration of the array. The syntax to initialize array is as follows,

Array_name [index] =value;

CPS Module 3 Arrays

HMSIT 2

Array_name indicated the name of the array, and index represents the position of the array element in the

array and the value represents the value being assigned to the array.

Ex. int a[5]={10,20,30,40,50}; this specifies initializing all the array elements at the same time.

Initialization

int a[5]={10,20,30}; only 3 elements are initialized. Even though the compiler reserves 5 spaces only 3 are

initialized the next two will automatically initialized to 0.

Initialization using for loop and scanf():

 The elements of the array can be read by input device(keyboard) by using for loop and scanf().

 for(i=0;i<n;i++)

 scanf(“%d”,&a[i]);

Limitations of arrays:

 The size of the array specified at the time of creation cannot be altered later. Or we cannot add

more elements to an array than specified in its size.

 It is difficult to insert an element between two existing elements.

 The amount of memory taken by an array depends on the size specified for the array and not on the

number of elements stored in the array.

Program to find the largest or maximum element in the array.

void main()

{

int i,n,big=0,a[10];

printf(“enter the size of the array”);

scanf(“%d”,&n);

printf(“Enter the elements of the array :\n”);

for(i=0;i<n;i++)

Scanf(“%d”,&a[i]); /* reads the array elements*/

for(i=0;i<n;i++)

 {

 if(a [i]>big) /* checks each element of array with big element*/

 big=a [i];

 }

printf(“The biggest element in the array is=%d”,big);

}

TWO DIMENSIONAL ARRAYS:
Array with two subscript is called two-dimensional array. It is used to store a table of values of the same

data type. It has two subscripts rows and columns.

Declaring a Two dimensional array:

data_type array_name [size1][size2];

In the above syntax data_type represents the data type of the array to be declared, array_name represents

the name of the array, size1 represents the number of rows and size2 represents the number of columns.

Ex. int a[4][5];

Here, the array a is a two dimensional array containing 4 rows and 5 columns

CPS Module 3 Arrays

HMSIT 3

Initializing a Two–dimensional Array:

Initializing all specified memory locations:

The elements of a two dimensional array can be initialized similar to a one –dimensional array. The syntax

for this is as follows.

data_type array_name[size1][size2]={value1,value2,…………value n};

Ex. int a[2][3]={2,3,4,5,6,7}; //This is an array with 2 rows and 3 columns,

The above initialization is similar to ,

a[0][0]=2; a[0][1]=3; a[0][2]=4;

a[1][0]=5; a[1][1]=6; a[1][2]=7;

OR

int a[2][3]={{2,3},

 {4,5},

 {6,7}};

Initialization using for loop and scanf():

 The elements of the array can be read by input device(keyboard) by using for loop and scanf().

 for(i=0;i<m;i++)

for(j=0;j<n;j++)

 scanf(“%d”,&a[i][j]);

Partial array initialization

int a[3][3]={{2,3},

 {4,5},

 {6,7}};

This array has the size 3X3 with only 6 elements, the remaining locations will be filled with 0s

2 3 0

4 5 0

6 7 0

Program to find the transpose of a given matrix

void main()

{

int i,j,m,n;
int a[4][4],b[4][4];

printf(“Enter the number of rows :\n”);

scanf(“%d”,&m);
printf(“Enter the number of columns :\n”);

scanf(“%d”,&n);

for(i=0;i<m;i++)
{

for(j=0;j<n;j++)

scanf(“%d”,&a[i][j]);
printf(“the transpose of the matrix is\n”);

for(i=0;i<m;i++)

{

CPS Module 3 Arrays

HMSIT 4

 for(j=0;j<n;j++)
 {

 b[i][j]=a[j][i];

 printf(“%d\t”,b[i][j]);

 }
printf(“\n”);

}

 }

}

Develop, implement and execute a C program that reads two matrices A (m x n) and B (p x q) and

Compute product of matrices A and B.

#include<stdio.h>

void main()

{

 int A[5][5], B[5][5], C[5][5], m,n,p,q,i,j,k;

 printf("Enter the order of matrix A");

 scanf("%d%d",&m,&n);

 printf("Enter the order of matrix B");

 scanf("%d%d",&p,&q);

 if(n!=p)

 {

 printf("\n Matrix multiplication is not possible");

 getch(); exit(0);

 }

 printf("\n Matrix multiplication is possible\n");

 printf("\n Enter %d elements of matrix A \n",m*n);

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 scanf("%d",&A[i][j]);

 }

 printf("\n Enter %d elements of matrix B\n", p*q);

 for(i=0;i<q;i++)

 {

 for(j=0;j<p;j++)

 scanf("%d",&B[i][j]);

 }

 for(i=0;i<m;i++)

 {

 for(j=0;j<q;j++)

 {

 c[i][j]=0;

 for(k=0;k<n;k++)

 C[i][j]+= A[i][k]*B[k][j];

 }

 }

 printf("The Product Matrix C is\n");

 for(i=0;i<m;i++)

 {

 for(j=0;j<q;j++)

CPS Module 3 Arrays

HMSIT 5

 printf("%d\t",C[i][j]);

 printf("\n");

 }

}

Develop, implement and execute a C program that reads two matrices A (m x n) and B (p x q) and

Compute addition of matrices A and B.

#include<stdio.h>

void main()

{

int A[5][5], B[5][5], C[5][5], m,n,p,q,i,j,k;

 printf("Enter the order of matrix A");

 scanf("%d%d",&m,&n);

 printf("Enter the order of matrix B");

 scanf("%d%d",&p,&q);

 printf("\n Enter %d elements of matrix A \n");

 for(i=0;i<m;i++)

 {

 for(j=0;j<n;j++)

 scanf("%d",&A[i][j]);

 }

 printf("\n Enter %d elements of matrix B\n");

 for(i=0;i<q;i++)

 {

 for(j=0;j<p;j++)

 scanf("%d",&B[i][j]);

 }

 for(i=0;i<m;i++)

 {

 for(j=0;j<q;j++)

 {

 c[i][j]=0;

 C[i][j]= A[i][j]+B[i][j];

 }

 }

 printf("The Addition of Matrix C is\n");

 for(i=0;i<m;i++)

 {

 for(j=0;j<q;j++)

 printf("%d\t",C[i][j]);

 printf("\n");

 }

}

Note: Perform subtraction and division same as above.

CPS Module 3 Arrays

HMSIT 6

Multi-Dimensional Array

C allows arrays of 3 or more dimensions. The exact limit is determined by the compiler. The general form

of a multi-dimensional array is

data_type array_name [s1] [s2] [s3]…………….[sm]

where si is the size of the ith dimension.

Some examples are

 int survey [3] [5] [12];

 float table [5] [4] [5] [3];

Dynamic Arrays:

 An array created at compile time by specifying size in the source code has a fixed size and cannot

be modified at run-time.

 The process of a allocating memory at compile time is known as static memory allocation.

 In C it is possible to allocate memory to arrays at run time are called dynamic memory allocation

and the arrays created at run time are called dynamic arrays.

 Dynamic arrays are created using hat are known as pointer variables and memory management

functions malloc, calloc and realloc.

1. malloc():this function allocates specified amount of memory . The syntax is as shown

Syntax: datatype pointer_vatriable;

Pointer variable=(casting*)malloc(n*sizeof(datatype));

 pointer_ variable is of any data type

 casting specifies the allocated memory is to cleared to store the specified type of data

 malloc() function allocates the memory

 sizeof()- Returns size in bytes

 n-specifies the number of elements to which memory to be allocated

Ex.
int *p;

p=(int*)malloc(5*sizeof(int));

Here p is pointer variable holds the address of first memory location returned by malloc () to hold 5

integer numbers.

Ex.

 p→ 2000

 2002

 2004

 2006

 2008

2. calloc(): this function is same as malloc() ,it allocates a block of memory. but it initializes memory

locations with 0 and returns pointer to first memory location

syntax :datatype pointer_vatriable;pointer

variable=(casting*)calloc(n*sizeof(datatype));

 pointer_ variable is of any data type

 casting specifies the allocated memory is to cleared to store the specified type of data

CPS Module 3 Arrays

HMSIT 7

 calloc() function allocates the memory

 sizeof()- Returns size in bytes

 n-specifies the number of elements to which memory to be allocated

Ex.
int *p;

p=(int*)calloc(5,sizeof(int));

Here p is pointer variable holds the address of first memory location returned by calloc () to hold 5 integer

numbers.

 p→ 0 2000

 0 2002

 0 2004

 0 2006

 0 2008

3. realloc() : this function reallocates the memory that is already allocated either by malloc or calloc.This

function helps to alter the memory size by extending or shrinking the allocated memory.

int *p;

p=(int*)malloc(5*sizeof(int));

 p→ 2000

 2002

 2004

 2006

 2008

when the memory to be increased so another 6 numbers can be stored, then realloc is used as shown

below
p=(int*)realloc(11*sizeof(int));

and allocated memory is as shown,

 p→ 2000

 2002

 2004

 2006

 2008

 2010

 2012

 2014

 2016

 2018

 2020

4. free() : function is used to deallocate the allocated memory either by malloc or calloc or realloc

syntax: free(pointer_variable);

if the above example is considered then

free(p); releases the memory

CPS Module 3 Arrays

HMSIT 8

CHARACTER ARRAYS AND STRINGS

Strings:
String: An array of characters is called a string.

In C language string is an array of characters and terminated by NULL character which is denoted by the

escape sequence ‘\0’

Declaring strings: There is no separate data type for strings in C . They treated as arrays of type character.

Ex. char a[80]; here the variable a can hold maximum of 80 characters including a Null (\0) character.

Initializing strings: arrays can be initialized in the following ways

1. char a[9]={‘c’,’o’,’m’,’p’,’u’,’t’,’e’,’r’};- the compiler allocates 9 memory locations ranging from

0 to 8 and these locations are initialized with the characters in the order specified. The remaining

locations are automatically initialized to null-characters as shown below

 0 1 2 3 4 5 6 7 8

b-

2. char a[10]={‘r’,’a’,’m’,’a’};

3. char b[]=”computer”;

4. char s[10];

scanf(“%s”, s);

String Handling Functions: The built in string handling functions are

1. strlen(s)- returns length of the string s.

2. strcpy(d,s)- copies the source string s to destination string d

3. strcat(s1,s2)-append s2 to s1

4. strrev(s)-reverses the string s

5. strcmp(s1,s2)-compares two strings s1 and s2 , returns 0 if both strings are equal

All these string functions are defined in header file “string.h”

1. strlen(str)- This function returns length of the string s . It takes a string syntax of this is

int strlen(char s[]);

Ex. program to find length of a string

#include<stdio.h>

#include<string.h>

void main()

{

char s[]=”RAMA”;

printf(“Length =%d”,strlen(s));

}

Ex. program to find length of a string without using string function.

#include<stdio.h>

#include<string.h>

void main()

{

c o m p u t e r \0

r a m a \0 \0 \0 \0 \0

CPS Module 3 Arrays

HMSIT 9

char s[]=”RAMA”;

int i=0;

while(s[i]!=’\0’) i++;

printf(“Length =%d”,i);

}

2. strcpy(d,s)- This function copies the source string s to destination string d

Ex. #include<stdio.h>

 #include<string.h>

void main()

{

char s[]=”RAMA”, d[];

strcpy(d,s)

printf(“Destinatin string =%s”,d);

d[]=RAMA;

}

Destination string d gets the value RAMA

Ex. program to copy a string to another without using string function.

#include<stdio.h>

#include<string.h>

void main()

{

char s[20],d[10];

int i=0,j;

printf(“Enter the first string”);

gets(s);

while(s[i]!=’\0’)

{

d[i]=s[i];

i++; j++:

}

d[i]=’\0’;

printf(“The destination string is =%s”,d);

}

If entered string is RAMA then d copied with RAMA

3.strcat(s1,s2)- This function joins two strings into one string or append s2 to s1. This function copies all

the characters of strong s2 to the end of string s1.

Ex. S1

 S2

After strcat(S1,S2) and length of S1 is increased

S1

V I V E K A

R A M A

V I V E K A R A M A \0

CPS Module 3 Arrays

HMSIT 10

#include<stdio.h>

#include<string.h>

void main()

{

char s1[20],s2[10];

printf(“Enter the first string”);

gets(s1);

printf(“Enter the second string”);

gets(s2);

strcat(s1,s2);

printf(“The concatenated string is =%s”,s1);

}

Program to implement string concatenation without using strcat function

#include<stdio.h>

#include<string.h>

void main()

{

char s1[20],s2[10];

int i=0,j;

printf(“Enter the first string”);

gets(s1);

printf(“Enter the second string”);

gets(s2);

while(s1[i]!=’\0’)

i++;

j=0;

while(s2[j]!=’\0’)

{

s1[i]=s2[j];

i++; j++;

}

s1[i]=’\0’;

printf(“The concatenated string is =%s”,s1);

}

4.strrev(s)-reverses the string s. This function reverse the given string s
Ex.

#include<stdio.h>

#include<string.h>

void main()

{

char s[]=”RAMA”;

printf(“reverse of string is =%s”,strrev(s));

}

S is

After strrev(s)

S is

I N D I A \0

A I D N I \0

CPS Module 3 Arrays

HMSIT 11

C program to check Palindrome or not using string

#include<stdio.h>

#include<string.h>

void main()

{

char s1[20], s2[20];;

int i,n;

printf(“Enter the string”);

gets(s1);

strcpy(s2,s1);

strrev(s2);

if(strcmp(s1,s2)==0)

printf(“the given string %s is palindrome”,s1);

else

printf(“the given string %s is not palindrome”,s1);

}

Reversing of string without using strrev

#include<stdio.h>

#include<string.h>

void main()

{

char s1[20], s2[20];;

int i,n;

printf(“Enter the first string”);

gets(s1);

n=strlen(s1);

for(i=0;i<n;i++)

s2[n-1-i]=s1[i];

s2[n]=’\0’;

}

SEARCHING AND SORTING ALGORITHMS

Searching: Searching is the process of finding the key value in the array, If the value is found we display its
position or else we display the searching element or key is not found in the array

Two types of searching are

o Linear search :In this type of searching key being compared with each element in the array with starting to
ending position

It is a simple method

Ex: in this array if key=5 , it will first check a[0] i.e 8==5 no match so next it compares with a[1] i.e 2==5

No match it proceeds to compare with a[2], a[3], a[4], a[5]etc., as the match found at a[7] the position is

displayed

8 0

 2 1

4 2

6 3

11 4

3 5

9 6

5 7

CPS Module 3 Arrays

HMSIT 12

Program to find the given key element in the array using LINEAR search.

void main()

{

int i,n,key,a[10];

printf(“enter the size of the array”);

scanf(“%d”,&n);

printf(“Enter the elements of the array :\n”);

for(i=0;i<n;i++)

Scanf(“%d”,&a[i]);

printf(“Enter the element to be search :\n”);

Scanf(“%d”,&key);

for(i=0;i<n;i++)

if(a[i]==key) /*checks each element of array with key element*/

{

 printf(“the given element is found at %d”, i+1);

 break;

 }

 if(i==n)

 printf(“%d is not found in the array”, key);
}

ALGORITHM

PURPOSE: Implement Linear search

INPUT: n, a[50], key

OUTPUT: key is present at the position or key not found

START

STEP 1: [Read no of elements]

Read n

STEP 2: [Read the elements of the array]

Fori=0 to n

Read a[i]

End ith for loop

STEP 3: [Read the elements to be searched]

Read key

STEP 4: [checks each element of array with key element)

if (a[i]==key)

STEP 6: [Check if key is not found]

If not found

Print key not found

STEP 11:[Finished]

STOP

CPS Module 3 Arrays

HMSIT 13

o Binary search:

o Binary Search is applied on the sorted array or list.

o In binary search, we first compare the value with the elements in the middle position of the

array.

o If the value is matched, then we return the value.

o If the value is less than the middle element, then it must lie in the lower half of the array and

if it's greater than the element then it must lie in the upper half of the array.

o We repeat this procedure on the lower (or upper) half of the array. Binary Search is useful

when there are large numbers of elements in an array.

o If key is 35 first it is compared with middle value 11 , as 35 is greater to 11, the low part of

the array will be checked for 35 and middle will be calculated by using mid=(low+high)/2

2 0

4 1

6 2

8 3

11 4

23 5

29 6

35 7

Program to find the given key element in the array using BINARY search.

void main()

{

int i,n,key,a[10],m,l,h;

printf(“enter the size of the array”);

scanf(“%d”,&n);

printf(“Enter the elements of the array in ascending order :\n”);

for(i=0;i<n;i++)

Scanf(“%d”,&a[i]);

printf(“Enter the element to be search :\n”);

Scanf(“%d”,&key);

low=0;

high=n-1;

while (l<=h)

{

 mid=(low+high)/2;

 if (key ==a[mid])

 {

 printf("%d found at location %d.\n", mid+1);

 break;

 }

 if (key <a[mid]) high=mid-1;

 if (key>a[mid]) high=mid+1;

 }

 printf(“%d is not found in the array”, key);

}

CPS Module 3 Arrays

HMSIT 14

ALGORITHM

PURPOSE: Implement Binary search

INPUT: n, a[50], key

OUTPUT: key is present at the position or key not found

START

STEP 1: [Read no of elements]

Read n

STEP 2: [Read the elements of the array]

Fori=0 to n

Read a[i]

End ith for loop

STEP 3: [Read the elements to be searched]

Read key

STEP 4: [Initiliazation]

low = 0;

high = n-1;

STEP 5: [Check whether low is less than of equal to high and calculate mid)

while low <=high

mid= (low+ high)/2;

STEP 6: [Check if mid is equal to key)

If a[mid] is equal to key

STEP 7: [print the key position]

Print key is present at the position mid+1

STEP 8: [check if mid is greater than key and calculate]

If mid is greater than key

high = mid-1;

STEP 9: [Else]

low = mid+1;

STEP 10: [Check if key is not found]

If not found

Print key not found

STEP 11:[Finished]

STOP

CPS Module 3 Arrays

HMSIT 15

Sorting: Sorting is a process of arranging elements in ascending or descending order.

Bubble Sort: Bubble sort is a sorting algorithm that works by repeatedly stepping through lists that need to

be sorted, comparing each pair of adjacent items and swapping them if they are in the wrong order.

#include<stdio.h>

int main()

{

int n,temp,i,j,a[20];

 printf("Enter total numbers of elements: ");

 scanf("%d",&n);

printf("Enter %d elements: ",s);

 for(i=0;i<n;i++)

 scanf("%d",&a[i]);

//Bubble sorting algorithm

 for(i=0;i<=n-1;i++)

 for(j=0;j<=n-1-i;j++)

 {

 if(a[j]>a[j+1])

{

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

 printf("After sorting: ");

 for(i=0;i<n;i++)

 printf(" %d",a[i]);

 return 0;

}

ALGORITHM

PURPOSE: Arranging the numbers in ascending order using bubble sort technique

INPUT: N, interger numbers in arrary a[i]

OUTPUT: Numbers are arranged in ascending order

START

STEP 1: [Input number of elements]

Read n

STEP 2: [Input the elements/numbers into array]

For i0 to n

Read a[i]

End for

STEP 3 : [Sorting the elements in ascending order]

For i 0 to n-1

For j0 to n-1

[Compare the adjacent elements]

If(a[j]>a[j+1]) then

CPS Module 3 Arrays

HMSIT 16

[Swap these elements]

Tempa[j]

a[j]a[j+1]

a[j+1]temp

end if

end for

end for

STEP 4: [Display the sorted elements of array]

For i0 to n

Print a[i]

End for

STEP 5: [Finished]

STOP

Selection Sort: A Selection Sort is a Sorting algorithm which finds the smallest element in the array and

swaps with the first element then with the second element and continues until the entire array is sorted.

#include<stdio.h>

#include<conio.h>

void main()

{

 int a[100],n,i,j,min,temp;

 clrscr();

 printf("\n Enter the Number of Elements: ");

 scanf("%d",&n);

 printf("\n Enter %d Elements: ",n);

 for(i=0;i<n;i++)

 {

 scanf("%d",&a[i]);

 }

 for(i=0;i<n-1;i++)

 {

 min=i;

 for(j=i+1;j<n;j++)

 {

 if(a[min]>a[j])

 min=j;

 }

 if(min!=i)

 {

 temp=a[i];

 a[i]=a[min];

 a[min]=temp;

 }

 }

CPS Module 3 Arrays

HMSIT 17

 printf("\n The Sorted array in ascending order: ");

 for(i=0;i<n;i++)

 {

 printf("%d ",a[i]);

 }

 getch();

}

ALGORITHM

PURPOSE: Arranging the numbers in ascending order using bubble sort technique

INPUT: N, interger numbers in arrary a[i]

OUTPUT: Numbers are arranged in ascending order

START

STEP 1: [Input number of elements]

Read n

STEP 2: [Input the elements/numbers into array]

For i0 to n

Read a[i]

End for

STEP 3 : [Sorting the elements in ascending order]

For i 0 to n-1

For ji+1 to n

[Compare the elements]

If(a[min]>a[j]) then

min = j;

STEP 4:
If(min!=i)

[Swap these elements]

Tempa[i]

a[i]a[min]

a[min]temp

end if

end for

end for

STEP 4: [Display the sorted elements of array]

For i0 to n

Print a[i]

End for

STEP 5: [Finished]

STOP

CPS Module 3 Arrays

HMSIT 18

IMPORTANT QUESTIONS

1. What is an array? Explain declaration and initialization of one dimension and 2 dimension

array.

2. Explain bubble sort with pseudo code and give example.

3. Write a program to calculate multiplications of 2 matrices.

4. Write a c program to find (one dimension array)

i. Even and odd number in array elements.

ii. Sum of even and odd number in the array.

iii. Sum and average of array elements.

5. Write a c program to find (two dimension array)

i. Even and odd number in array elements.

ii. Sum of even and odd number in the array.

iii. Sum and average of array elements.

6. Explain any 5 string handling functions with example.

7. Write a c program to copy the content of one string into another using function.

8. What is string? Explain the declaration and initialization of string.

9. Write a C program for searching techniques

i. Linear Search

ii. Binary Search

10. Write a C program for sorting techniques

a. Bubble sort

b. Selection Sort

**

Module - 4 Branching and Looping

HMSIT Page 1

Module 4

User Defined Functions and Recursion

Example programs, Finding Factorial of a positive integers and Fibonacci series.

Functions:

 A function is a sub program or group of statements that perform a specific task.

 A large program can be divided into manageable pieces called modules, where each

module does a specific work. And each module is considered as a function.

Advantages of functions:

 Functions are used to avoid the repetition of codes in a program.

 A function reduces the length of the programs.

 Debugging functions is easier.

 Programs can be written easily.

 Functions can be shared by many programmers.

The repetitive code of a program can be written within a function and wherever necessary this

function is used to do that work.

Types of functions:

Different types of functions are

 Built in Functions(Library functions)

 User-defined functions

Built in functions or built-in library functions are the functions provided in the library of the C

compiler. These functions are created and stored in the library of the C compiler by C developers.

Ex. Standard i/o functions like, scanf(), printf()

 Standard string functions like- strlen(), strcat()

User-defined functions:

Users or programs create their own functions in C programs. These functions are called user

defined functions.

Elements of user-defined functions:

o Function definitions

o Function call

o Function declaration

1. Function definition: The program module that is written to achieve a specific task is

called function definition. The following code shoes the general syntax for function

definition

Module - 4 Branching and Looping

HMSIT Page 2

return-type function-name(parameter list)

{

 local variable declaration;

executable statement 1;

executable statement 2;

.

.

.

executable statement n;

return(expression);

}

In the above code, return-type indicates the data type of the information that the function returns

to it’s’ calling program. A function can return int, float, double, char or any other data type of

information.

function-name:

 refers to the name of the function and list of parameters passed into the function. The

parameters enclosed within parentheses are called formal parameters.

 A function can contain local variables that are declared inside the function and they are not

recognized outside the function.

 The function contains the executable code in many lines.

 The last statement is the return statement that returns result or information to the calling

program. A function may contain or may not contain a return statement.

 Once the function is defined it can be invoked or called from anywhere in the program

For examples consider the below program,

void main()

{

int m,n,res;

printf(“Enter two numbers”);

scanf(“%d%d”, &m, &n);

res=ADD(m,n); /* function call or function invocation*/

printf(“Addtion of m and n is %d”, res);

}

int ADD(int a, int b) //function definition

{

return(a+b);

}

The above function ADD(), accepts two numbers of type int, adds these two numbers and return

the result which is of int type to it’s’ calling program.

Module - 4 Branching and Looping

HMSIT Page 3

2. Function Call or Function invocation:

The general syntax for function invocation is.

variable=function-name(actual-parameter-list);

variable is the variable that stores the result returned by the function. It should be same to

the return type of function.

Function –name is the name of the function

We know that execution of programs always starts from function main(). If we want to add two

numbers then function ADD() is to be invoked. Invoking a function is called function call.

For Ex. ADD() can be invoked as,

void main()

{

int m,n,res;

printf(“Enter two numbers”);

scanf(“%d%d”, &m, &n);

res=ADD(m,n); /* function call or function invocation*/

printf(“Addtion of m and n is %d”, res);

}

 A function can be called by specifying it’s name followed by a list of arguments enclosed

in the parentheses and separated by commas.

 If a function call does not require any arguments, then an empty pair of parentheses follows

the function name.

 The arguments appearing in the function call are referred to as actual parameters

3. Function declaration or function prototyping

The process of declaring the functions before they are used is called function declaration or

function prototyping

Declaration of functions can be done before main or after include files

Ex.

int ADD(int , int); this is function declaration

void main()

{

int m,n,res;

printf(“Enter two numbers”);

scanf(“%d%d”, &m, &n);

res=ADD(m,n); /* function call or function invocation*/

printf(“Addtion of m and n is %d”, res);

}

Module - 4 Branching and Looping

HMSIT Page 4

int ADD(int a, int b) //function definition

{

return(a+b);

}

Formal Parameters and Actual parameters:

The variables defined in the function definition are called formal parameters

The variables used in the function or function invocation are called actual parameters or

argument.

Ex.

void main()

{

int m,n,res;

printf(“Enter two numbers”);

scanf(“%d%d”, &m, &n);

res=ADD(m,n); /* m and n are actual parameters or arguments*/

printf(“Addtion of m and n is %d”, res);

}

int ADD(int a, int b) //a and b are formal parameters

{

return(a+b);

}

Categories of functions:

Based on the parameters and return value, the functions are categorized as,

 Functions with no parameter and no return values

 Functions with no parameter and with return values

 Functions with parameter and no return values

 Functions with parameter and with return values

Functions with no parameter and no return values

In this type of functions there is no data transfer between the calling function and called function.

So calling function cannot send values and hence called function cannot receive the data.

Ex.

void main()

{

display(); /* only function is called */

}

Module - 4 Branching and Looping

HMSIT Page 5

int display() //a and b are formal parameters

{

printf(“hello world\n”);

}

 display() is called with no arguments so no parameters are defined in function heading

 display() in main transfers the control to called function and print “hello world”

 When last statement is executed control is transferred to the calling function

Functions with no parameter and with return values

In this type of function the data is not passed from calling function to called function but the result

is returned to calling function

Ex.

void main()

{

int res;

res=ADD(); /* only function is called */

printf(“Addtion of m and n is %d”,res);

}

int ADD() //function with no parameters

{

int m=10,n=20,sum;

sum=m+n;

return(sum);

}

Function with parameter and with no return values

In this type of function the data is transferred from calling function to called function

But there is no data transfer from called function to calling function.

main()

{

 int a,b;

 a=10,b=20;

exchange(a,b);

printf(“a=%d and b=%d”, a,b);

}

void exchange(int m, int n)

{

int temp;

Module - 4 Branching and Looping

HMSIT Page 6

temp=m;

m=n;

n=temp;

}

Functions with parameter and with return values

In this type of function the data is transferred from calling function to called function

And the result is transferred from called function to calling function.

void main()

{

int m,n,res;

printf(“Enter two numbers”);

scanf(“%d%d”, &m, &n);

res=ADD(m,n); /* m and n are actual parameters or arguments*/

printf(“Addtion of m and n is %d”, res);

}

int ADD(int a, int b) //a and b are formal parameters

{

int sum;

sum=a+b; //function with no return value

return(sum);

}

Parameter passing mechanism:

During the declaration of functions and during invocation of function the parameters are passed

into the function, passing parameters to function is done in

 Call by Value

 Call by Reference

Call by Value:

Calling or invoking a function by passing values or variables to the function is called call by

value.

i.e in pass value , the values of actual parameters are copied into formal parameters

In this method any changes to the values or variables are done in the function, cannot be visible

outside the function

Ex.

main()

{

 int a,b;

 a=10,b=20;

Module - 4 Branching and Looping

HMSIT Page 7

exchange(a,b);

printf(“a=%d and b=%d”, a,b); /* no exchange a=10, b=20 will be printed*/

}

void exchange(int m, int n) /* m=10 amd n=20/*

{

int temp;

temp=m;

m=n;

n=temp; /* after exchange m=20, n=10*/

}

Working:

 Execution starts from function main() and the variables a and b are assigned the values 10

and 20 respectively

 The function exchange() is called with actual parameters a and b whose values are 10 and

20

 In the function exchange() the formal parameters m and n receive the values 10 and 20

 In the function exchange() the values m and n are exchanged

 But the values of the actual parameters in main () have not been exchanged.

In pass by value (call by value) any changes done on formal parameters will not have any effect on

actual parameters.

Call by Reference:

If we want to view the changes made to the variables , outside the function, we can pass the

address of the variables to the function, So any change to the formal parameters imply there is a

change in actual parameters. This technique is called call by address or pass by address.

In this technique the address of actual parameters are sent to function. In the called function the

formal parameters should be declared as pointers.

Ex. main()

 {

 int a,b;

 a=10,b=20;

exchange(&a,&b); /* address of a and b are sent*/

printf(“a=%d and b=%d”, a,b); /* exchange a=20, b=10 will be printed*/

}

void exchange(int *m, int *n) /* m=2000 and n=2002*/

{

int temp;

temp=*m;

*m=*n;

n=temp; / after exchange *m=20,* n=10*/

}

Module - 4 Branching and Looping

HMSIT Page 8

Working:

 Assume address of variable a is 2000, and b is 2002

 2000 2002

 a b

 The function exchange() is invoked by sending the address of a and b to the function.

 In the function exchange() the formal parameters m and n are declared as pointers as they

have to hold the address of a and b respectively.

 In the function exchange() *m refers to the value stored in the address held by m and *n

refers to the value stored in the address held by n . so values of a and b will be exchanged.

The changes made to formal parameters imply changes to actual parameters

Recursive functions:

A function that call’s by itself is called a recursive function.

This type of functions call themselves during their execution until certain conditions are not

satisfied.

Ex. .

 main()

{

 long int n,f;

 printf(“Etner a number”);

scanf(“%ld”,&n);

f=factorial(n); /* call the function */

printf(“The factorial of %d is = %d”, n,f);

}

long int factoiral(long int n)

{

 if(n==1)

return 1;

 else

 return(n*factorial(n-1)); /*calling factorial itself*/

}

Working:

 In the main () function factorial is called by passing n to it

 n is checked if it is 1, if not the program control moves to return(n*factorial(n-1))

 now the factorial function is called with factorial(n-1) and this will be repeatedly calls up

 when the function factorial(1)calls with n=1 the result is returned as 1 through return 1 to

it’s calling function

 again the intermediate result will be calculated and returned to its calling function and so

on.

10
20

Module - 4 Branching and Looping

HMSIT Page 9

Ex. if n=5, for the first time factorial is called with factorial(5) as n is not equal to 1 , the line

return(5*factorial(5-1)) is executed.

return(5*factorial(5-1))= 5*factorial(4)at this stage 5*24=120 is returned to factorial (5)

 24 is returned 4*6=24 is returned

factorial(4)=4*factorial(4-1)

 6 is returned

factorial(3)=3*factorial(3-1)

 2 is returned

factorial(2)=2* factorial(2-1)

 1 is returned

factorial(1)=1

Program to get nth term of Fibonacci Series

void main()

{

int i,n;

printf(“enter the term number”);

scanf(“%d”,&n);

i=fib(n);

printf(“the %d fibonacci number is %d”, n,i);

}

int fib(m)

{

if(m==1 || m==2)

return 1;

else return(fib(m-1)+fib(m-2));

}

Storage classes/Scope availability and life time of variables:

The different storage classes in C language are

 Global variables/ External variables

 Local variables

 Static variables

 Register variables

 Automatic variables

Module - 4 Branching and Looping

HMSIT Page 10

Global variables: these are the variables defined after preprocessor directive and before void

main() and which can be accessed throughout the program.

Ex.

int display();

int a = 10;

void main()

{

int b=20;

printf(“a=%d”,a);

printf(“b=%d”,b);

display();

}

int display ()

{

int c=30;

printf(“a=%d”,a);

printf(“c=%d”,c);

}

Local variables: Local variables are the variables which are defined within a function. It is

defined are defined inside a block have local scope, it can be accessed between limited boundary

that is block.

In the above program c is used in function add() is a local variable as it is defined only in that

function

Static Variable:

The variables that are declared using the keyword static are called static variables. They have the

characteristics of both local and global variables.

Ex. void main()

{

display(); /* prints 1 */

display(); /* prints 2 */

display(); /* prints 3 */

display(); /* prints 4 */

display(); /* prints 5 */

}

 void display()

{

static int i=0;

i++;

printf (“%d\n”, i)

}

A Global variable

B is Local variable in main function

C is Local variable in display function

Module - 4 Branching and Looping

HMSIT Page 11

Each time control goes into the function, the previous value of i is used and it is updated. The

updated value is used in the next call of the function.

Register Variable:

Any variable declared with the qualifier register is called a register variable. The variable value is

stored not in memory but it is stored in one of the register of CPU, Registers are accessed much

faster compared to memory. So this leads to faster execution of the program.

This declaration is allowed is allowed only for the local variables and to the formal parameters.

Ex. register int x; /* x value is stored in one of the CPU register*/

Automatic variable:

A variable declared inside a function without storage class specification is by default an automatic

variable. The storage class of an variable number in the example below is automatic

Ex: main()

 {

 int number;

 ……….....

 …………..

 }

We may also use the keyword auto to declare automatic variables explicitly

main()

 {

 auto int number;

 ………...........

 ……………..

 }

Module - 4 Branching and Looping

HMSIT Page 12

IMPORTANT QUESTIONS

1. Explain different types of functions and elements of user defined functions along with

examples.

OR

2. Explain function definition, function call and function declaration with examples.

3. What are actual and formal parameters? Illustrate with example

4. What is recursion? Write a program to compute the factorial of a given n number using

recursion.

OR

5. Write recursive function to calculate factorial of a number & write a C program to calculate

the ncr(Binomial coefficient).

6. Explain the two categories of arguments passing techniques with examples

7. Explain different types of functions based on return value and parameters with examples.

OR

8. Explain different categories of functions

9. Explain different types of Storage classes along with examples

OR

10. Explain Scope availability and life time variables along with examples.

11. Write a C program to get nth term of Fibonacci Series

Module - 5 Structure and pointers

HMSIT Page 1

Module 5

Structure and Pointers, Preprocessor Directives

STRUCTURES:

Structure is a collection of one or more variables of same data type or different data types

that are grouped together under a single name .It is user defined data type. It is also a record about

particular entity.

Declaration of structure: Structure is declared using key word struct followed by structures

name. The structures can be declared in three types

1. Tagged structure

2. Structure without tag

3. Type defined structure

1. Tagged structure: A structure is declared using key word struct followed by

identifier called tag_name. structure with tag name is called tagged structure

Syntax: Ex. struct student

 struct < tag_name > {

{ int rollno;

datatype variable1; char name[10];

datatype variable2; int marks;

…….. …………. char grade;

}; };

struct < tag_name > varaible1,variable2;

struct student s1,s2;

 Where struct is the keyword specifies structure is defined

 tag_name is used as an identifier to define the structure variables, structure name is

any valid variable name.

 The variables inside the structure are defined with data type. They called as

members or fields of structure. They can be of int float or char data type

 Each member is ended with ;

 The definition of structure should end with ;

 Structure variables are declared with data type as shown struct < tag_name >

varaible1,variable2;

Module - 5 Structure and pointers

HMSIT Page 2

In this structure definition student is structure name with 4 data members rollno is integer type

indicates students rollnumber, name indicates student name, marks indicates marks scored by

student grade indicates grade scored by student.

s1,s2 are variables of stuct student, s1 indicates first student s2 indicates second studnet.

Space allocated for s1 is as shown below,

s1.rollno integer 2 bytes

s1 Name Array of 10 characters 10 bytes

s1.marks Integer 2 bytes

s1.grade character 1 byte

 Total memory= 15 bytes

2. Structure without tag: A structure is defined without tag_name is called structure without tag.

Syntax: Ex. struct

 struct {

{ int rollno;

datatype variable1; char name[10];

datatype variable2; int marks;

…….. …………. char grade;

} varaible1,variable2; } s1,s2;

3. Type defined structure: The structure defined with keyword typedef is called type defined

structure.

Syntax: Ex. typedef struct

Typedef struct {

{ int rollno;

datatype variable1; char name[10];

datatype variable2; int marks;

…….. …………. char grade;

}< tag_id >; } student;

< tag_id > varaible1,variable2; student s1,s2;

Module - 5 Structure and pointers

HMSIT Page 3

Initialization of structure:

1. structure variables can be initialized at declaration time, as shown,

struct student s1={111,”Raju”,430,’A’};

This initializes s1.rollno =111, s1.name = Raju, s1.marks = 430,s1.grade = ’A’

2. Through key board variables can be initialized with . (dot or access) operator.

Ex. struct student

{

int rollno;

char name[10];

int marks;

char grade;

};

main()

{

struct student s1,s2;

printf(”enter the details of first student”);

scnaf(“%d%s%d%c”,&s1. rollno,s1. Name,&s1.marks,&s1.grade);

printf(”enter the details of second student”);

scnaf(“%d%s%d%c”,&s2. rollno,s2. name,&s2.marks,&s2.grade);

}

Values Entered through keyboard are assigned to s1 variable are as shown,

s1.rollno 111

s1 Name “Raju”

s1.marks 430

s1.grade ’A’

Values Entered through keyboard are assigned to s2 variable are as shown,

S2.rollno 222

S2 Name “Ali”

S2.marks 400

S2.grade ’B’

Module - 5 Structure and pointers

HMSIT Page 4

Array of` structures:

Similar to array of integers , we can define an array of structure .For example, to store the details

of 10 students we can define an array of students as shown,

struct student

{

int rollno;

char name[10];

int marks;

char grade;

};

main()

{

struct student s[10]; //s is an array of 10 elements of student type.

printf(”enter the details of students”);

for(i=0;i<10;i++)

scnaf(“%d%s%d%c”,&s[i].s[i].rollno,&s[i].Name,s[i].marks,&s[i].grade);

printf(”Details of students ”);

printf(“%d%s%d%c”, s[i]. rollno,s[i]. name, s[i].marks, s[i].grade);

}

Structure to contain the details of employees

struct employee

{

int id;

char name[10];

int salary;

};

main()

{

struct employee e[10]; //e is an array of 10 elements of employee type.

int n;

printf(”enter the number of employees”);

scanf(“%d”,&n);

printf(”enter the details of employees”);

Module - 5 Structure and pointers

HMSIT Page 5

for(i=0;i<n;i++)

scnaf(“%d%s%d”,&e[i].id,e[i].name,&e[i].salary);

printf(”Details of employees ”);

for(i=0;i<n;i++)

printf(“%d%s%d”,e[i].id,e[i].name,e[i].salary);

}

Program to read student details using an array of structure with 4 fields (Roll number,

Name, Marks and Grade) . Printing the marks of the student, whose name is given

struct student

{

int rollno;

char name[10];

int marks;

char grade;

};

main()

{

int n,i,found=0;

char sname[10];

struct student s[10];

printf(“enter how many students”);

scanf(“%d”,&n);

printf(“enter the details of 10 students”);

for(i=0;i<n;i++)

scnaf(“%d%s%d%c”,&s[i].s[i].rollno,&s[i].Name,s[i].marks,&s[i].grade);

printf(”Details of students are ”);

printf(“%d%s%d%c”, s[i]. rollno,s[i]. name, s[i].marks, s[i].grade);

printf(“enter name of student whose marks to be displayed”);

scanf(“%s”,sname);

for(i=0;i<n;i++)

{

if(strcmp(s[i],sname)==0)

{

 printf(“Marks of student is %d”s[i].marks);

Module - 5 Structure and pointers

HMSIT Page 6

printf(“name=”);

puts(s[i].name);

exit(0);

}

printf(“given student name not found”);

}

UNIONS: Union is same as structure. But it assigns memory to only a single member which is

having large space. The memory in union is shared by all the variables. Only one variable can be

accessed at a time.

Ex. student is defined as , here struct is replaced by the keyword union

Syntax :

union < tag_name > union student

{ {

datatype variable1; int rollno;

datatype variable2; char name[10];

…….. …………. int marks;

char grade;

}; };

union student s1;

If s1 is a variable of union student type,

s1.Name Array of 10 characters 10 bytes

As name field is the largest field, memory of 10 bytes will be allocated. This will be shared by all

other members.

Difference between structure and union

slno Structure Union

1 Keyword struct is used to define a structure Keyword union is used to define a structure

2 Memory is allocated for each member Memory is allocated only

3 Altering values of one member will not

affect other members

Altering values of one member will 4affect

other members

4 Individual members can be accessed at a

time

Only one member can be accessed at a time

Module - 5 Structure and pointers

HMSIT Page 7

5 All members can be initialized at one Only first member can be initialized

6. Syntax:

 struct < tag_name >

 {

 datatype variable1;

 datatype variable2;

 …….. ………….

 };

 Syntax:

 union < tag_name >

 {

 datatype variable1;

 datatype variable2;

 …….. ………….

 };

7. Ex. struct student

{

 int rollno;

 char name[10];

 int marks;

 char grade;

};

Ex. union student

{

 int rollno;

 char name[10];

 int marks;

 char grade;

};

POINTERS: Pointer is a variable which contains the address of another variable of same type.

Declaration of Pointers:

General Syntax:
Datatype * pointer_variable ;

Ex. int *p; p is an integer pointer variable that is used to point to another integer

 variable. * is called dereferencing operator.

Initialization of pointer:

Pointers can be initialized with address of other variables as shown,
int *p,a;

p=&a; //p is assigned with the address of a

Program to demonstrate the use pointers;
#include<stdio.h>

#include<conio.h> p a

void main()

{

int a=10,*p; 2000 1000

p=&a;

printf(“the value of p = %u”,p);--1000

printf(“the value of a = %d”,a);--10

printf(“the value of *p = %d”,*p);---10

getch();

}

1000 10

Module - 5 Structure and pointers

HMSIT Page 8

Pointer to Array

We can use a pointer to point to an Array, and then we can use that pointer to access the array.

Syntax: datatype * ptr_name;

Ptr_name=&array_name or ptr_name=array_name;
Ex: int a[5]={ 1, 2, 3, 4, 5 };

We can declare a pointer of type int to point to the array a.

int *p;

p = a; or p = &a[0]; //both the statements are same meaning.

Now we can access every element of array a using p++ to move from one element to another.

NOTE : You cannot decrement a pointer once incremented. p-- Won’t work.

EXAMPLE:
#include<stdio.h>

#include<conio.h>

Void main()

{

int i;

int a[5] = {1, 2, 3, 4, 5};

int *p = a; // same as int*p = &a[0]

for (i=0; i<5; i++)

{

 printf("%d", *p);

 p++;

}

getch();

}

In the above program, the pointer *p will print all the values stored in the array one by one. We

can also use the Base address (a in above case) to act as pointer and print all the values.

1 2000

2 2002

3 2004

4 2006

5 2008

int *p = a; this statement assigns p to contain the address 2000

when p++; is executed p points to 2002

Character pointer:

Strings are array of characters. We can use pointer to that pointers to the characters present in the

string (array of characters).

Declaration Syntax: datatype * ptr_name;

ptr_name=string_name;
Char str[10]=”nanjesh”

We can declare a pointer of type char to point to the array of character str.
char *p;

 p 2000

Module - 5 Structure and pointers

HMSIT Page 9

p = str;

The pointer points to the starting character of the string str i.e ‘n’ and later the pointer can be

incremented to get the other elements.

EXAMPLE:
#include<stdio.h>

#include<conio.h>

Void main()

{

int i;

char str[10] = “nanjesh”;

char *p = str;

for (i=0;str[i]!=’\0’; i++)

{

 printf("%c", *p);

 p++;

}

getch();

}

Pointer to pointer: Pointer that stores the address of another pointer variable is called pointer to a

pointer.
Declaration: Datatype ** pointer_variable ;

Ex. int *p; -p is an integer pointer.

 int **p1; --p1 is pointer to pointer.

int a;

p=&a; ---p points to a integer variable a.

p1=&p; ------p1 points to the pointer variable p.

 3000 2000 1000

 p1 p a

EXAMPLE:
#include<stdio.h>

#include<conio.h>

void main()

{

int a=10,*p,**p1;

p=&a;

p1=&p;

printf(“the value of a = %d”,a);--- 10

printf(“the value of p = %u”,p);---1000

printf(“the value of *p = %d”,*p);--10

printf(“the value of p1 = %u”,p1)---2000

printf(“the value of p1 = %u”,*p1)---1000

printf(“the value of **p1 = %d”,**p1);----10

1000 10 2000

Module - 5 Structure and pointers

HMSIT Page 10

getch();

}

Pointers as function arguments: The address of the variables can be passed as an argument to a

function, when we pass addresses to a function, the parameters receiving the addresses should be

pointers(call by reference).

Ex:

 Ex. main()

 {

 int a,b;

 a=10,b=20;

exchange(&a,&b); /* address of a and b are sent*/

printf(“a=%d and b=%d”, a,b); /* exchange a=20, b=10 will be printed*/

}

void exchange(int *m, int *n) /* m=2000 and n=2002*/

{

int temp;

temp=*m;

*m=*n;

n=temp; / after exchange *m=20,* n=10*/

}

Functions returning pointers:

A function can return a single value by its name or return multiple values through pointer

parameters. We can also force a function to return a pointer to the calling function.

Ex:

int *larger(int *,int *);

main()

{

 int a=10;

 int b=20;

 int *p;

 p=larger(&a,&b); //Function call

 Printf(“%d”,*p);

}

int *larger(int *x,int *y)

{

 if(*x>*y)

 return x; //address of a

 else

return y; //address of b

}

Module - 5 Structure and pointers

HMSIT Page 11

Pointers to Functions:

A function, like a variable, has a type and an address location in the memory. It is therefore

possible to declare a pointer to a function, which can then be used as an argument in another

function.

Ex:

double mul(int , int);

double (*p1);

p1=mul;

declare p1 as a pointer to a function and mul as a function and then make p1 to point 2 to the

function mul that is equivalent to

 mul(x,y);

Pointers and structures

The name of an array stands for the address of the zeroth element the same thing is true of the

names of arrays of structure variables.

Ex: Suppose product is an array variable of struct type. The name product represents the address of

its zeroth element.

struct inventory

{

char name[30];

int number;

float price;

}product[2], *ptr;

ptr=product;

ptrname;

ptr->num;

ptr->price;

Dynamic Memory allocation functions:

Allocation of memory to variables is known as memory allocationTwo types of memory allocation

are

 Static memory allocation: Allocating memory at compile time is known as static memory

allocation. Memory allocated at this time is fixed , and it cannot be altered, Memory as

allocated at declaration

 Dynamic memory allocation: Allocation of memory during runtime is known as dynamic

memory allocation. Memory once fixed can be altered at later stages in the

program.Memory is allocated as and when required. Using pointers memory can be

allocated dynamically

Dynamic memory allocation functions: The various dynamic memory allocation and

deallocation functions are
1. malloc()
2. calloc()
3. realloc()
4. free()

Module - 5 Structure and pointers

HMSIT Page 12

1. malloc():this function allocates specified amount of memory . The syntax is as shown

syntax : datatype pointer_vatriable;

pointer variable=(casting*)malloc(n*sizeof(datatype));

 pointer_ variable is of any data type

 casting specifies the allocated memory is to cleared to store the specified type of

data

 malloc() function allocates the memory

 sizeof()- Returns size in bytes

 n-specifies the number of elements to which memory to be allocated

Ex.
int *p;

p=(int*)malloc(5*sizeof(int));

Here p is pointer variable holds the address of first memory location returned by malloc ()

to hold 5 integer numbers.

Ex.

 p→ 2000

 2002

 2004

 2006

 2008

2. calloc(): this function is same as malloc() ,it allocates a block of memory. but it

initializes memory locations with 0 and returns pointer to first memory location

syntax :datatype pointer_vatriable;

pointer variable=(casting*)calloc(n,sizeof(datatype));

 pointer_ variable is of any data type

 casting specifies the allocated memory is to cleared to store the specified type of

data

 calloc() function allocates the memory

 sizeof()- Returns size in bytes

 n-specifies the number of elements to which memory to be allocated

Ex.
int *p;

p=(int*)calloc(5,sizeof(int));

Here p is pointer variable holds the address of first memory location returned by calloc ()

to hold 5 integer numbers.

 p→ 0 2000

 0 2002

 0 2004

 0 2006

 0 2008

Module - 5 Structure and pointers

HMSIT Page 13

3. realloc() : this function reallocates the memory that is already allocated either by malloc

or calloc.This function helps to alter the memory size by extending or shrinking the

allocated memory.

 Assume
int *p;

p=(int*)malloc(5*sizeof(int));

 p→ 2000

 2002

 2004

 2006

 2008

when the memory to be increased so another 6 numbers can be stored, then realloc is

used as shown below
p=(int*)realloc(11*sizeof(int));

and allocated memory is as shown,

 p→ 2000

 2002

 2004

 2006

 2008

 2010

 2012

 2014

 2016

 2018

 2020

4. free() : function is used to deallocate the allocated memory either by malloc or calloc or

realloc

syntax: free(pointer_variable);

if the above example is considered then

free(p); releases the memory

Preprocessor Directives:

 The set of statements which are processed before compilation are called preprocessor.

 Commands used in preprocessor are called preprocessor directives and they begin with “#”

symbol.

 The different preprocessor directives in C language are,

1.#define: Defines a macro substitution. This macro defines constant value and can be any of the

basic data types.

Syntax : #define identifier string

Ex: #define pi 3.14

Module - 5 Structure and pointers

HMSIT Page 14

Program to find square and cube of a number using macro.

#include<stdio.h>

#include<conio.h>

#define square(a) a*a

#define cube(a) a*a*a

Void main()

{

int n=2;

printf(“square=%d\n”,square(n));

printf(“cube=%d\n”,cube(n));

getch();

}

Program to find area of a circle using macro.

#include<stdio.h>

#include<conio.h>

#define area(r) 3.14*r*r

void main()

{

int r=2;

printf(“area=%d\n”,area(r));

getch();

}

2. #include: specifies the files to be included. The source code of the file “file_name” is included

in the main program at the specified place.

Syntax: #include <file_name>

Ex: #include<stdio.h>,

#include<conio.h>,

#include<math.h>

3. #undef: undefines a macro which is defined using #define.

Syntax: undef identifier

Ex: #define pi 3.14

#undef pi

4.#ifdef : Checks a macro is defined or not. If defined block 1 is executed else block 2

Ex:

#define pi 3.14

#ifdef pi

Printf(“pi is defined\n”);

Else

Printf(“pi is not defined\n”);

Module - 5 Structure and pointers

HMSIT Page 15

5.#ifndef: This is reverse of #ifdef.

#define pi 3.14

#ifndef pi

Printf(“pi is not defined\n”);

Else

Printf(“pi is defined\n”);

6.#if and else : #if works using relation operator. Else works as an alternative to #if.

7. #error: prints the error message on stdrr

Ex:
#define pi 3.14

#ifndef pi

Printf(“pi is not defined\n”);

Else

#error “pi not found”

IMPORTANT QUESTIONS

1. Define Structures. Explain declaration of Structures and accessed using dot operator with

examples.

2. Show how structure variables are passed as a parameter to a function with examples.

3. Write a C program to maintain record of n students detail using using array of structures with 4

fields (Roll No., name, marks, grade). Each field is an appropriate data type. Print the marks of

student if student name is given.

4. Explain with an example, how to create a structure using typedef.

5. Explain array of structures with suitable example program.

6. Explain structures within structure with suitable example program.

7. Write a C program to maintain a record of n employee detail using an array of Structures with

3 fields (id, name, salary) and print the details of employees whose salary is above 5000.

8. Define Pointer variable. Explain with an example, the declaration and initialization and

accessing of pointer variable

9. What is DMA? Explain following C functions along with syntax and example to each.

 malloc()

 calloc()

 realloc()

 free()

Module - 5 Structure and pointers

HMSIT Page 16

10. Develop a C program to read 2 numbers and functions to swap these numbers using pointers

11. Write short notes on following:

a. Pointers and arrays

b. Pointers and character strings

c. Pointers as function arguments

d. Function returning pointers

e. Pointers to functions

f. Pointers and structures

12. Write a C program to find the sum, mean and standard deviation of all elements in an array

using pointers

13. Explain any 5 preprocessor directives in C.

	Pointer to Array

