
Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 1

CONTENTS

1. INTRODUCTION 2

2. EXECUTION STEPS 3

3. EXPERIMENTS 13

1: Display Hello word in UART 13

2:-Speed Control of the DC Motor 17

3:-Stepper Motor Interface and rotate clockwise and anticlockwise 22

4:-Display digital output for given analog input using internal ADC 27

5:-Interface DAC and generate Triangular and Square Waveform 37

6:-Interface 4X4 Matrix Keypad and display in LCD 43

 7:-Generate PWM waveform and vary its duty cycle 46

8:-Using external interrupt switches toggle the led’s 50

9:-Display 0-F in 7 segment display 54

10:-Interface a switch and display status in LED, Relay and Buzzer 55

11:-Interface SPI ADC and display Ambient temperature

4. Viva Question 73

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 2

INTRODUCTION

Microcontroller or Microprocessor is an electronic device which accepts data from memory or

input devices, process it according to instruction and sends or store result either in output devices

or memory.

Microprocessor contains no RAM, no ROM, and I/O ports on the chip itself only CPU or

processor is present. To make it functional all should be added.

ARM Cortex M3 Series:

ARM was founded in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple

Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6

processor family, and VLSI became the initial licensee. Subsequently, additional companies,

including Texas Instruments, NEC, Sharp and ST Microelectronics, licensed the ARM processor

designs

Nowadays ARM partners ship in excess of 2 billion ARM processors each year. Unlike many

semiconductor companies, ARM does not manufacture processors or sell the chips directly.

Instead it licenses the processor designs to business partners. This business model is commonly

called Intellectual

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 3

2. EXECUTION STEPS

Step1: Open the Keil software and select the New Microvision project from Project Menu as

shown below.

Step2: Browse to your project folder and provide the project name and click on

save.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_01.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_01.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_02.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 4

Step3: Once the project is saved a new pop up “Select Device for Target” opens, Select the

controller(NXP:LPC1768) and click on OK.

Step4: Select the controller(NXP:LPC1768) and click on OK.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_03.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_04.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 5

Step5: As LPC1768 needs the startup code, click on Yes option to include the LPC17xx

Startup file.

Step6: Create a new file to write the program.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_05.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_06.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 6

Step7: Type the code or Copy paste the below code snippet.

Step8: After typing the code save the file as main.c.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_07.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_08.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 7

Step9: Add the recently saved file to the project.

Step10: Add the main.c along with system_LPC17xx.c.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_09.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_10.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 8

Step11: Build the project and fix the compiler errors/warnings if any.

Step12: Code is compiled with no errors. The .hex file is still not generated.

Enable Hex File Generation

https://exploreembedded.com/wiki/File:Lpc1768_Keil_11.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_12.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 9

Step13: Click on Target Options to select the option for generating .hex file.

Step14: Set IROM1 start address as 0x0000.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_13.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_14.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 10

Step15: Enable the option to generate the .hex file

Step16: .Hex file is generated after a rebuild.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_15.png
https://exploreembedded.com/wiki/File:Lpc1768_Keil_16.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 11

Step17: Check the project folder for the generated .hex file.

Now .hex file with project name will be generated.

Working with Flash Magic Software :-

Now open the flash magic software and follow the below steps.

1. Select the IC from Select Menu(LPC1768).

2. Select the COM Port. Check the device manger for detected Com port.

3. Select Baud rate from 9600

4. Select None Isp Option.

5. Oscillator Freq 12.000000(12Mhz).

6. Check the Erase blocks used by Hex file option

7. Browse and Select the hex file.

8. Check the Verify After Programming Option.

9. If DTR and RTS are used then go to Options->Advanced Options-> Hardware Config

and select the Use DTR and RTS Option.

10. Hit the Start Button to flash the hex file.

11. Once the hex file is flashed, Reset the board. Now the controller should run your

application code.

https://exploreembedded.com/wiki/File:Lpc1768_Keil_17.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 12

http://www.exploreembedded.com/wiki/File:0_Lpc1768FlashMagic.jpg

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 13

EXPERIMENTS

Experiment No1: Display Hello word in UART

UART module

UART module and registers. LPC1768 has 4-UARTs numbering 0-3, similarly the pins are also

named as RXD0-RXD3 and TXD0-TXD3.As the LPC1768 pins are multiplexed for multiple

functionalities, first they have to be configured as UART pins.

Below table shows the multiplexed UARTs pins.

Port

Pin

Pin

Number
PINSEL_FUNC_0 PINSEL_FUNC_1 PINSEL_FUNC_2 PINSEL_FUNC_3

P0.02 98 GPIO TXD0 ADC0[7]

P0.03 99 GPIO RXD0 ADC0[6]

P2_0 48 GPIO PWM1[1] TXD1

P2.1 49 GPIO PWM1[2] RXD1

P0.10 62 GPIO TXD2 SDA2 MAT3[0]

P0.11 63 GPIO RXD2 SCL2 MAT3[1]

P0.0 82 GPIO CAN1_Rx TXD3 SDA1

P0.1 85 GPIO CAN1_Tx RXD3 SCL1

UART Registers

The below table shows the registers associated with LPC1768 UART.

Register Description

RBR Contains the recently received Data

THR Contains the data to be transmitted

FCR FIFO Control Register

LCR Controls the UART frame formatting(Number of Data Bits, Stop bits)

DLL Least Significant Byte of the UART baud rate generator value.

DLM Most Significant Byte of the UART baud rate generator value.

Steps for Configuring UART0

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 14

Below are the steps for configuring the UART0.

1. Step1: Configure the GPIO pin for UART0 function using PINSEL register.

2. Step2: Configure the FCR for enabling the FIXO and Reset both the Rx/Tx FIFO.

3. Step3: Configure LCR for 8-data bits, 1 Stop bit, Disable Parity and Enable DLAB.

4. Step4: Get the PCLK from PCLKSELx register 7-6 bits.

5. Step5: Calculate the DLM,DLL values for required baudrate from PCLK.

6. Step6: Update the DLM,DLL with the calculated values.

7. Step6: Finally clear DLAB to disable the access to DLM,DLL.

After this the UART will be ready to Transmit/Receive Data at the specified baudrate.

Main Code:-

#include <lpc17xx.h>

#include "stdutils.h"

#define SBIT_WordLenght 0x00u

#define SBIT_DLAB 0x07u

#define SBIT_FIFO 0x00u

#define SBIT_RxFIFO 0x01u

#define SBIT_TxFIFO 0x02u

#define SBIT_RDR 0x00u

#define SBIT_THRE 0x05u

/* Function to initialize the UART0 at specifief baud rate */

void uart_init(uint32_t baudrate)

{

 uint32_t var_UartPclk_u32,var_Pclk_u32,var_RegValue_u32;

 LPC_PINCON->PINSEL0 &= ~0x000000F0;

 LPC_PINCON->PINSEL0 |= 0x00000050; // Enable TxD0 P0.2 and p0.3

 LPC_UART0->FCR = (1<<SBIT_FIFO) | (1<<SBIT_RxFIFO) | (1<<SBIT_TxFIFO); //

Enable FIFO and reset Rx/Tx FIFO buffers

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 15

 LPC_UART0->LCR = (0x03<<SBIT_WordLenght) | (1<<SBIT_DLAB); // 8bit data,

1Stop bit, No parity

 /** Baud Rate Calculation :

 PCLKSELx registers contains the PCLK info for all the clock dependent peripherals.

 Bit6,Bit7 contains the Uart Clock(ie.UART_PCLK) information.

 The UART_PCLK and the actual Peripheral Clock(PCLK) is calculated as below.

 (Refer data sheet for more info)

 UART_PCLK PCLK

 0x00 SystemFreq/4

 0x01 SystemFreq

 0x02 SystemFreq/2

 0x03 SystemFreq/8

 **/

 var_UartPclk_u32 = (LPC_SC->PCLKSEL0 >> 6) & 0x03;

 switch(var_UartPclk_u32)

 {

 case 0x00:

 var_Pclk_u32 = SystemCoreClock/4;

 break;

 case 0x01:

 var_Pclk_u32 = SystemCoreClock;

 break;

 case 0x02:

 var_Pclk_u32 = SystemCoreClock/2;

 break;

 case 0x03:

 var_Pclk_u32 = SystemCoreClock/8;

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 16

 break;

 }

 var_RegValue_u32 = (var_Pclk_u32 / (16 * baudrate));

 LPC_UART0->DLL = var_RegValue_u32 & 0xFF;

 LPC_UART0->DLM = (var_RegValue_u32 >> 0x08) & 0xFF;

 util_BitClear(LPC_UART0->LCR,(SBIT_DLAB)); // Clear DLAB after setting DLL,DLM

}

/* Function to transmit a char */

void uart_TxChar(char ch)

{

 while(util_IsBitCleared(LPC_UART0->LSR,SBIT_THRE)); // Wait for Previous

transmission

 LPC_UART0->THR=ch; // Load the data to be transmitted

}

int main()

{

 char a[]="\n\rHello World";

 int i;

 SystemInit();

 uart_init(9600); // Initialize the UART0 for 9600 baud rate

 for(i=0;a[i];i++) //transmit a predefined string

 uart_TxChar(a[i]);

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 17

Experiment No 2:-Speed Control of the DC Motor

DC Motor Control using PWM of LPC1768

In most of the applications controlling the speed of DC motor is essential where the precision

and protection are the essence. Here we will use the PWM technique to control the speed of the

motor

LPC1768 has one PWM channel with six ports. PWM changes the average output voltage by fast

switching. By changing the on time, the output voltage can be 0 to 100%. There are two software

parameters that need a little explanation: cycle and offset. Cycle is the length of a PWM duty

cycle and offset is the on time of a duty cycle.

SELECTING THE PWM FUNCTION TO GPIO:

The block diagram below shows the PWM pins multiplexed with other GPIO pins. The PWM

pin can be enabled by configuring the corresponding PINSEL register to select PWM function.

When the PWM function is selected for that pin in the Pin Select register, other Digital signals

are disconnected from the PWM input pins.

PWM Channel Port Pin Pin Functions Associated PINSEL Register

PWM1.1 P2.0 0-GPIO, 1- PWM1.1, 2-TXD1, 3- 1,0 bits of PINSEL4

PWM1.2 P2.1 0-GPIO, PWM1.2, 2-RXD1, 3- 3,2 bits of PINSEL4

PWM1.3 P2.2 0-GPIO, PWM1.3, 2-CTS1, 3- 5,4 bits of PINSEL4

PWM1.4 P2.3 0-GPIO, 1- PWM1.4, 2-DCD1, 3- 7,6 bits of PINSEL4

PWM1.5 P2.4 0-GPIO, 1- PWM1.5, 2-DSR1 , 3- 9,8 bits of PINSEL4

PWM1.6 P2.5 0-GPIO, 1- PWM1.6, 2-DTR1 , 3- 11,10 bits of PINSEL4

PWM REGISTERS:

The registers associated with LPC1768 PWM are

 IR-> Interrupt Register: The IR can be written to clear interrupts. The IR can be read to

identify which of eight possible interrupt sources are pending.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 18

 TCR-> Timer Control Register: The TCR is used to control the Timer Counter functions.

The Timer Counter can be disabled or reset through the TCR.

 PR- > Prescale Register: The TC is incremented every PR+1 cycles of PCLK.

 MCR-> Match Control Register: The MCR is used to control if an interrupt is generated

and if the TC is reset when a Match occurs.

 MR0 – MR6-> Match Register: Each can be enabled in the MCR to reset the TC, stop both

the TC and PC, and/or generate an interrupt when it matches the TC.

 PCR-> PWM Control Register: Enables PWM outputs and selects PWM channel types as

either single edge or double edge controlled.

 LCR-> Load Enable Register: Enables use of new PWM match values.

Note: for detailed description of each registers kindly refer PWM waveform section

If you need to control the speed of a DC motor you have a few options. Controlling the

speed by controlling either voltage or current is inefficient. Let’s understand a bit the speed

control of DC motor Using Pulse Width Modulation because controlling how long the

voltage is applied with a certain frequency gives you the best control over the motor’s

speed.

Conventional power supplies tend to generate lots of heat because are working as variable

resistors pumping current through external circuits. The pulse width modulation circuits are

digital circuits which produce pulsed current. Due to the fact that the pulsed width

modulation power supplies works in a state in between on and off, the heat generated is

very low compared to the conventional power supplies.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 19

The duty cycle of the circuit can be changed by pressing the switches SW22 and SW23. If we

increase the duty cycle(press SW22), the speed of the motor increases and if we decrease the

duty cycle(press SW23), the speed of the motor decreases.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 20

Main code:-

#include <lpc17xx.h>

void delay_ms(unsigned int ms)// delay routine

{

 unsigned int i,j;

 for(i=0;i<ms;i++)

 for(j=0;j<60000;j++);

}

#define SBIT_CNTEN 0 //counter enable

#define SBIT_PWMEN 2 //pwm 2 block enable

#define SBIT_PWMMR0R 1 //This bit is used to Reset PWMTC

 #define SBIT_PWMENA3 11 //This bit is used to enable/disable the PWM

 #define PWM_3 4 //P2_2 (0-1 Bits of PINSEL4)

int main(void)

{

 int dutyCycle;

 SystemInit();

 /* Cofigure pins(P2_2) for PWM mode. */

 LPC_PINCON->PINSEL4 = (1<<PWM_3) ;

 /* Enable Counters,PWM module */

 LPC_PWM1->TCR = (1<<SBIT_CNTEN) | (1<<SBIT_PWMEN);

 LPC_PWM1->PR = 0x00; /* No Prescalar */

 LPC_PWM1->MCR = (1<<SBIT_PWMMR0R); /*Reset on PWMMR0, reset TC if it

matches MR0 */

 LPC_PWM1->MR0 = 100; /* set PWM cycle(Ton+Toff)=100) */

 /* Enable the PWM output pins for PWM_1-PWM_4(P2_0 - P2_3) */

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 21

 LPC_PWM1->PCR = (1<<SBIT_PWMENA3);

 while(1)

 {

 {

 LPC_PWM1->MR3 = dutyCycle; /* Increase the dutyCycle from 0-100 */

 delay_ms(5);

 }

 if(!(LPC_GPIO2->FIOPIN & 0x00000800))//if sw 23 pressed

 {

 while(!(LPC_GPIO2->FIOPIN & 0x00000800));

 dutyCycle-=10; //decrement duty cycle 10%

 if(dutyCycle<0)

 {

 dutyCycle=0;

 }

 }

 else if(!(LPC_GPIO2->FIOPIN & 0x00001000)) //if SW 22 pressed

 {

 while(!(LPC_GPIO2->FIOPIN & 0x00001000));

 dutyCycle+=10; //increment duty cycle 10%

 if(dutyCycle>100)

 {

 dutyCycle=99;

 }

 }

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 22

Experiment No 3:-Stepper Motor Interface and rotate clockwise and

anticlockwise

Stepper motor

A stepper motor or step motor or stepping motor is a brushless DC electric motor that divides a

full rotation into a number of equal steps. The motor's position can then be commanded to move

and hold at one of these steps without any position sensor for feedback (an open-loop controller),

as long as the motor is carefully sized to the application in respect to torque and speed.

How Stepper Motors Work

Stepper motors consist of a permanent magnetic rotating shaft, called the rotor, and

electromagnets on the stationary portion that surrounds the motor, called the stator. Figure 1

illustrates one complete rotation of a stepper motor. At position 1, we can see that the rotor is

beginning at the upper electromagnet, which is currently active (has voltage applied to it). To

move the rotor clockwise (CW), the upper electromagnet is deactivated and the right

electromagnet is activated, causing the rotor to move 90 degrees CW, aligning itself with the

active magnet. This process is repeated in the same manner at the south and west electromagnets

until we once again reach the starting position.

https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Open-loop_controller
https://en.wikipedia.org/wiki/Torque
http://www.imagesco.com/articles/picstepper/02.html#fig1

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 23

 Figure 1

 In the above example, we used a motor with a resolution of 90 degrees or demonstration

purposes. In reality, this would not be a very practical motor for most applications. The

average stepper motor's resolution -- the amount of degrees rotated per pulse -- is much

higher than this. For example, a motor with a resolution of 1.8 degrees would move its

rotor 1.8 degrees per step, thereby requiring 200 pulses (steps) to complete a full 360

degree rotation.

Here we are using 200 pole stepper motor hence it gives 360degree/200 pole=1.8 degree per

step.

So for example if we need 120 degree rotation then we have to apply approximately 67 pulses to

complete 120 degree rotation

120/1.8=66.66==67 steps approximately.

Here one cycle means 4 steps. So if we need 90 degree rotation then 90/1.8=50 steps.

Here one cycle means 4 steps. So 50/4=12.5 =~ 13. So we need 13 cycles to rotate 90 degree.

 If we want to run 180 degree then 180/1.8=100. So 100/4=25 cycles would make a stepper

motor to rotate 180 degree.

Main code:- Step Angle Rotation

#include <lpc17xx.h>

void delay(unsigned int ms)

{

 unsigned int i,j;

 for(i=0;i<ms;i++)

 for(j=0;j<20000;j++); //delay subroutine

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 24

}

/* start the main program */

int main()

{

int cycle;

 SystemInit(); //Clock and PLL configuration

 LPC_GPIO0->FIODIR |= 0x00078000; //Configure the PORT0 pins as OUTPUT;

 for(cycle=0; cycle<13; cycle++)// for loop condition for number of rotation. It gives

approx 90 degree rotation

 {

 LPC_GPIO0->FIOPIN = 0x00008000 ; // p0.15 pin

 delay(100);

 LPC_GPIO0->FIOPIN = 0x00010000 ;// p0.16 pin

 delay(100);

 LPC_GPIO0->FIOPIN = 0x00020000 ; // p0.17 pin

 delay(100);

 LPC_GPIO0->FIOPIN = 0x00040000 ;// p0.18 pin

 delay(100);

 }

 }

Stepper motor rotation clockwise and anticlockwise.

#include "lpc17xx.h"

void delay();

void delay()

{

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 25

 int i,j;

 for(i=0;i<0xff;i++)

 for(j=0;j<0x400;j++);

}

int main (void)

{

char rotate=0;

 SystemInit();

 LPC_GPIO0->FIODIR |= 0x00078000;

 while(1)

 {

 if(rotate==1)

 {

 LPC_GPIO0->FIOPIN = 0x00008000 ;

 delay();

 LPC_GPIO0->FIOPIN = 0x00010000 ;

 delay();

 LPC_GPIO0->FIOPIN = 0x00020000 ;

 delay();

 LPC_GPIO0->FIOPIN = 0x00040000 ;

 delay();

 }

 else

 {

 LPC_GPIO0->FIOPIN = 0x00040000 ;

 delay();

 LPC_GPIO0->FIOPIN = 0x00020000 ;

 delay();

 LPC_GPIO0->FIOPIN = 0x00010000 ;

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 26

 delay();

 LPC_GPIO0->FIOPIN = 0x00008000 ;

 delay();

 }

 if(!(LPC_GPIO2->FIOPIN & 0x00000800))

 {

 while(!(LPC_GPIO2->FIOPIN & 0x00000800));

 rotate=1;

 }

 else if(!(LPC_GPIO2->FIOPIN & 0x00001000))

 {

 while(!(LPC_GPIO2->FIOPIN & 0x00001000));

 rotate=0;

 }

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 27

Experiment No 4:-Display digital output for given analog input using internal

ADC

LPC1768 ADC Block

LPC1768 has an inbuilt 12 bit Successive Approximation ADC which is multiplexed among 8

input pins.

The ADC reference voltage is measured across VREFN to VREFP, meaning it can do the

conversion within this range. Usually the VREFP is connected to VDD and VREFN is connected

to GND.

As LPC1768 works on 3.3 volts, this will be the ADC reference voltage.

Now the $$resolution of ADC = 3.3/(2^{12}) = 3.3/4096 =0.000805 = 0.8mV$$

The below block diagram shows the ADC input pins multiplexed with other GPIO pins.

The ADC pin can be enabled by configuring the corresponding PINSEL register to select ADC

function.

When the ADC function is selected for that pin in the Pin Select register, other Digital signals are

disconnected from the ADC input pins.

Adc

Channel

Port

Pin
Pin Functions

Associated PINSEL

Register

AD0 P0.23
0-GPIO, 1-AD0[0], 2-I2SRX_CLK, 3-

CAP3[0]
14,15 bits of PINSEL1

AD1 P0.24
0-GPIO, 1-AD0[1], 2-I2SRX_WS, 3-

CAP3[1]
16,17 bits of PINSEL1

AD2 P0.25
0-GPIO, 1-AD0[2], 2-I2SRX_SDA, 3-

TXD3
18,19 bits of PINSEL1

AD3 P0.26 0-GPIO, 1-AD0[3], 2-AOUT, 3-RXD3 20,21 bits of PINSEL1

AD4 P1.30 0-GPIO, 1-VBUS, 2- , 3-AD0[4] 28,29 bits of PINSEL3

AD5 P1.31 0-GPIO, 1-SCK1, 2- , 3-AD0[5] 30,31 bits of PINSEL3

AD6 P0.3 0-GPIO, 1-RXD0, 2-AD0[6], 3- 6,7 bits of PINSEL0

AD7 P0.2 0-GPIO, 1-TXD0, 2-AD0[7], 3- 4,5 bits of PINSEL0

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 28

ADC Registers

The below table shows the registers associated with LPC1768 ADC.

We are going to focus only on ADCR and ADGDR as these are sufficient for simple A/D

conversion.

However once you are familiar with LPC1768 ADC, you can explore the other features and the

associated registers.

Register Description

ADCR A/D COntrol Register: Used for Configuring the ADC

ADGDR
A/D Global Data Register: This register contains the ADC’s DONE bit and the

result of the most recent A/D conversion

ADINTEN A/D Interrupt Enable Register

ADDR0 -

ADDR7

A/D Channel Data Register: Contains the recent ADC value for respective

channel

ADSTAT
A/D Status Register: Contains DONE & OVERRUN flag for all the ADC

channels

Steps for Configuring ADC

Below are the steps for configuring the LPC1768 ADC.

1. Configure the GPIO pin for ADC function using PINSEL register.

2. Enable the CLock to ADC module.

3. Deselect all the channels and Power on the internal ADC module by setting ADCR.PDN

bit.

4. Select the Particular channel for A/D conversion by setting the corresponding bits in

ADCR.SEL

5. Set the ADCR.START bit for starting the A/D conversion for selected channel.

6. Wait for the conversion to complete, ADGR.DONE bit will be set once conversion is

over.

7. Read the 12-bit A/D value from ADGR.RESULT.

8. Use it for further processing or just display on LCD.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 29

Main ADC code

#include "lpc17xx.h"

#include "lcd.h"

#define VREF 3.3 //Reference Voltage at VREFP pin, given VREFN = 0V(GND)

#define ADC_CLK_EN (1<<12)

#define SEL_AD0_2 (1<<2) //Select Channel AD0.2

#define CLKDIV 1 //ADC clock-divider (ADC_CLOCK=PCLK/CLKDIV+1) = 12.5Mhz @

25Mhz PCLK

#define PWRUP (1<<21) //setting it to 0 will power it down

#define START_CNV (1<<24) //001 for starting the conversion immediately

#define ADC_DONE (1U<<31) //define it as unsigned value or compiler will throw #61-D

warning

#define ADCR_SETUP_SCM ((CLKDIV<<8) | PWRUP)

////////// Init ADC0 CH2 /////////////////

Init_ADC()

{

 // Convert Port pin 0.25 to function as AD0.2

 LPC_SC->PCONP |= ADC_CLK_EN; //Enable ADC clock

 LPC_ADC->ADCR = ADCR_SETUP_SCM | SEL_AD0_2;

 LPC_PINCON->PINSEL1 |= (1<<18) ; //select AD0.2 for P0.25

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 30

////////// READ ADC0 CH:2 /////////////////

unsigned int Read_ADC()

{

 unsigned int i=0;

LPC_ADC->ADCR |= START_CNV; //Start new Conversion

 while((LPC_ADC->ADDR2 & ADC_DONE) == 0); //Wait untill conversion is

finished

 i = (LPC_ADC->ADDR2>>4) & 0xFFF; //12 bit Mask to extract result

}

////////// DISPLAY ADC VALUE /////////////////

Display_ADC()

{

 unsigned int adc_value = 0;

 char buf[4] = {5};

 float voltage = 0.0;

 adc_value = Read_ADC();

 sprintf((char *)buf, "%3d", adc_value); // display 3 decima place

 lcd_putstring16(0,"ADC VAL = 000 "); //1st line display

 lcd_putstring16(1,"Voltage 00 V"); //2nd line display

 lcd_gotoxy(0,10);

 lcd_putstring(buf);

 voltage = (adc_value * 3.3) / 4095 ;

 lcd_gotoxy(1,8);

 sprintf(buf, "%3.2f", voltage);

 lcd_putstring(buf);

}

////////// MAIN /////////////////

int main (void)

{

 init_lcd();

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 31

 Init_ADC();

 lcd_putstring16(0,"** HMSIT **");

 lcd_putstring16(1,"** TUMKUR **");

 delay(60000);

 delay(60000);

 delay(60000);

 lcd_putstring16(0,"ADC Value.. ");

 lcd_putstring16(1,"voltage.......");

 while(1)

 {

 Display_ADC();

 delay(100000);

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 32

LCD Code:-

#include "lpc17xx.h"

#include "lcd.h"

void Lcd_CmdWrite(unsigned char cmd);

void Lcd_DataWrite(unsigned char dat);

#define LCDRS 9

#define LCDRW 10

#define LCDEN 11

#define LCD_D4 19

#define LCD_D5 20

#define LCD_D6 21

#define LCD_D7 22

#define LcdData LPC_GPIO0->FIOPIN

#define LcdControl LPC_GPIO0->FIOPIN

#define LcdDataDirn LPC_GPIO0->FIODIR

#define LcdCtrlDirn LPC_GPIO0->FIODIR

#define LCD_ctrlMask ((1<<LCDRS)|(1<<LCDRW)|(1<<LCDEN))

#define LCD_dataMask ((1<<LCD_D4)|(1<<LCD_D5)|(1<<LCD_D6)|(1<<LCD_D7))

void delay(unsigned int count)

{

int j=0, i=0;

for (j=0;j<count;j++)

for (i=0;i<50;i++);

}

 void sendNibble(char nibble)

{

 LcdData&=~(LCD_dataMask); // Clear previous data

 LcdData|= (((nibble >>0x00) & 0x01) << LCD_D4);

 LcdData|= (((nibble >>0x01) & 0x01) << LCD_D5);

 LcdData|= (((nibble >>0x02) & 0x01) << LCD_D6);

 LcdData|= (((nibble >>0x03) & 0x01) << LCD_D7);

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 33

}

 void Lcd_CmdWrite(unsigned char cmd)

{

 sendNibble((cmd >> 0x04) & 0x0F); //Send higher nibble

 LcdControl &= ~(1<<LCDRS); // Send LOW pulse on RS pin for selecting Command register

 LcdControl &= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation

 LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

 delay(100);

 LcdControl &= ~(1<<LCDEN);

 delay(10000);

 sendNibble(cmd & 0x0F); //Send Lower nibble

 LcdControl &= ~(1<<LCDRS); // Send LOW pulse on RS pin for selecting Command register

 LcdControl &= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation

 LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

 delay(100);

 LcdControl &= ~(1<<LCDEN);

 delay(1000);

}

void Lcd_DataWrite(unsigned char dat)

{

 sendNibble((dat >> 0x04) & 0x0F); //Send higher nibble

 LcdControl |= (1<<LCDRS); // Send HIGH pulse on RS pin for selecting data register

 LcdControl &= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation

 LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

 delay(100);

 LcdControl &= ~(1<<LCDEN);

 delay(1000);

 sendNibble(dat & 0x0F); //Send Lower nibble

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 34

 LcdControl |= (1<<LCDRS); // Send HIGH pulse on RS pin for selecting data register

 LcdControl &= ~(1<<LCDRW); // Send LOW pulse on RW pin for Write operation

 LcdControl |= (1<<LCDEN); // Generate a High-to-low pulse on EN pin

 delay(100);

 LcdControl &= ~(1<<LCDEN);

 delay(1000);

}

void lcd_clear(void)

{

 Lcd_CmdWrite(0x01);

}

int lcd_gotoxy(unsigned char x, unsigned char y)

{

 unsigned char retval = TRUE;

 if((x > 1) && (y > 15))

 {

 retval = FALSE;

 }

 else

 {

 if(x == 0) Lcd_CmdWrite(0x80 + y); //Move the cursor to beginning of the first line

 else if(x==1) Lcd_CmdWrite(0xC0 + y);// Move the cursor to beginning of the second

line

 }

 return retval;

}

void lcd_putchar(unsigned char c)

{

 Lcd_DataWrite(c);

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 35

void lcd_putstring(char *string)

{

 while(*string != '\0')

 {

 lcd_putchar(*string);

 string++;

 }

}

void lcd_putstring16(unsigned char line, char *string)

{

 unsigned char len = 16;

 lcd_gotoxy(line, 0);

 while(*string != '\0' && len--)

 {

 lcd_putchar(*string);

 string++;

 }

}

 void init_lcd(void)

 {

 LcdDataDirn |= LCD_dataMask; // Configure all the LCD pins as output

 LcdCtrlDirn |= LCD_ctrlMask;

 Lcd_CmdWrite(0x03);//

 delay(2000);

 Lcd_CmdWrite(0x03);//

 delay(1000);

 Lcd_CmdWrite(0x03);//

 delay(100);

 Lcd_CmdWrite(0x2);// Initialize LCD in 4-bit mode

 Lcd_CmdWrite(0x28);// enable 5x7 mode for chars

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 36

 Lcd_CmdWrite(0x0e);// Display OFF, Cursor ON

 Lcd_CmdWrite(0x06);//Entry mode

 Lcd_CmdWrite(0x01);// Clear Display

 delay(1);

 }

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 37

Experiment No 5:-Interface DAC and generate Triangular and Square

Waveform

LPC1768 DAC Programming Tutorial

In this article, we will go through a discussion on ARM Cortex-M3 LPC1768 DAC

programming tutorial. As you might be knowing, DAC stands for Digital to Analog Conversion.

The DAC block in ARM Cortex-M3 LPC176x microcontroller is one of the simplest to program

and also supports DMA(direct memory access). This tutorial is also applicable for LPC1769

MCU. Basically we assign a digital value to a register and the DAC block outputs it equivalent

analog signal as shown below:

LPC1768/LPC1769 DAC Block

ARM Cortex-M3 LPC176x MCUs incorporate a 10 bit DAC and provide buffered analog output.

As per the datasheet, it is implemented as a string DAC which is the most simplest form of DAC

consisting of 2N resistors in series where N = no. of bits which simply forms a Kelvin-Varley

Divider. LPC176x DAC has only 1 output pin, referred to as AOUT. The Analog voltage at the

output of this pin is given as:

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 38

Where VALUE is the 10-bit digital value which is to be converted into its Analog counterpart

and VREF is the input reference voltage.

Pins relating to LPC1768 DAC block:

Pin Description

AOUT

(P0.26)

Analog Output pin. Provides the converted Analog signal which is referenced to VSSA

i.e. the Analog GND. Set Bits[21:20] in PINSEL1 register to [10] to enable this

function.

VREFP,

VREFN

These are reference voltage input pins used for both ADC and DAC. VREFP is positive

reference voltage and VREFN is negative reference voltage pin. In example shown

below we will use VREFN=0V(GND).

VDDA,

VSSA

VDDA is Analog Power pin and VSSA is Ground pin used to power the ADC module.

These are generally same as VCC and GND but with additional filtering to reduce

noise.

DAC Registers in ARM Cortex-M3 LPC176x

The DAC module in ARM LPC1768/LPC1769 has 3 registers viz. DACR, DACCTRL,

DACCNTVAL. In this tutorial we will only go through to DACR register since the other two are

related with DMA operation, explaining which is not in the scope of this tutorial. Just note that

DMA is used to update new values to DACR from memory without the intervention of CPU.

This is particularly useful when generation different types of waveforms using DAC. We will

cover this in another tutorial.

Also note that the DAC doesn’t have a power control it in PCONP register. Simply select the

AOUT alternate function for pin P0.26 using PINSEL1 register to enable DAC ouput.

The DACR register in LPC1768

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 39

The field containing bits [15:6] is used to feed a digital value which needs to be converted and

bit 16 is used to select settling time. The bit significance is as shown below:

1. Bit[5:0]: Reserved.

2. Bit[15:6] – VALUE: After a new VALUE is written to this field, given settling time

selected using BIAS has elapsed, we get the converted Analog voltage at the output. The

formula for analog voltage at AOUT pin is as shown above.

3. Bit[16] – BIAS: Setting this bit to 0 selects settling time of 1us max with max current

consumption of 700uA at max 1Mhz update rate. Setting it to 1 will select settling time of

2.5us but with reduce max current consumption of 300uA at max 400Khz update rate.

4. Bits[31:17]: Reserved

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 40

Triangle wave generation:-

#include "LPC17xx.h"

uint32_t val;

int main()

{

 SystemInit();

 LPC_PINCON->PINSEL1 |= 0x02<<20; //p0.26 pinsel bits 20 and 21

 while(1)

 {

 while(1)

 {

 val++;// increment values by 6

 LPC_DAC->DACR=(val<<6);//send values to dac

 if(val>=0x3ff)// if value exceeds 1024

 {

 break;

 }

 }

 while(1)

 {

 val--; // decrement value by 6

 LPC_DAC->DACR=(val<<6);// send value to dac

 if(val<=0x000)// if value come down by 0

 {

 break;

 }

 }

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 41

Square Wave generation:-

#include "LPC17xx.h"

void delay(unsigned int ms)// delay subroutine

{

 unsigned int i,j;

 for(i=0;i<ms;i++)

 for(j=0;j<2000;j++);

}

int main()

{

 SystemInit();

 LPC_PINCON->PINSEL1 |= 0x02<<20;//p0.26 pinsel bits 20 and 21

 while(1)

 {

 LPC_DAC->DACR=0xffff;// send maximum values to dac

 delay(20); // delay

 LPC_DAC->DACR=0x0000;// send min values to dac

 delay(20);

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 42

Experiment No 6:-Interface 4X4 Matrix Keypad and display in LCD

Introduction 4x4 matrix keypad interface:-

There are various methods to provide an input for the GPIO pins of a microcontroller which can

be software controlled or hardware controlled. We have seen a hardware controlled method by

taking an input from a switch or a press button. Push Button Interfacing with LPC1768

The keypad is another external input device which is hardware controlled, but is used for a

specific purpose.

In this tutorial we take a look at how a 4×4 matrix keypad is interfaced with the LPC1768

microcontroller. The input taken from the matrix keypad will be displayed on a 16x2 lcd display

Basic Configuration

NOTE: Please read this section carefully as it is important to understand the hardware

connection before writing a software for this application.

 As we are using a 4×4 matrix keypad, a total of 8 input-output pins of the micro-

controller will be required for interfacing.

 One half of the 8 pins will be hardware controlled and the other half will be software

controlled.

///

https://openlabpro.com/guide/push-button-interfacing-with-lpc1768/

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 43

// Matrix Keypad Scanning Routine

//

// COL1 COL2 COL3 COL4

// 0 1 2 3 ROW 1

// 4 5 6 7 ROW 2

// 8 9 A B ROW 3

// C D E F ROW 4

//

Main code:-

#include "lpc17xx.h"

#include "lcd.h"

#define COL1 0

#define COL2 1

#define COL3 4

#define COL4 8

#define ROW1 9

#define ROW2 10

#define ROW3 14

#define ROW4 15

#define COLMASK ((1<<COL1) |(1<< COL2) |(1<< COL3) |(1<< COL4))

#define ROWMASK ((1<<ROW1) |(1<< ROW2) |(1<< ROW3) |(1<<

ROW4))

#define KEY_CTRL_DIR LPC_GPIO1->FIODIR

#define KEY_CTRL_SET LPC_GPIO1->FIOSET

#define KEY_CTRL_CLR LPC_GPIO1->FIOCLR

#define KEY_CTRL_PIN LPC_GPIO1->FIOPIN

/////////////// COLUMN WRITE /////////////////////

void col_write(unsigned char data)

{

 unsigned int temp=0;

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 44

 temp=(data) & COLMASK;

 KEY_CTRL_CLR |= COLMASK;

 KEY_CTRL_SET |= temp;

}

///////////////////////////////// MAIN ///////////////////////////////////////

int main (void)

{

unsigned char key, i;

unsigned char rval[] = {0x77,0x07,0x0d};

unsigned char keyPadMatrix[] =

{

 '4','8','B','F',

 '3','7','A','E',

 '2','6','0','D',

 '1','5','9','C'

};

 SystemInit();

 init_lcd();

 KEY_CTRL_DIR |= COLMASK; //Set COLs as Outputs

 KEY_CTRL_DIR &= ~(ROWMASK); // Set ROW lines as Inputs

 lcd_putstring16(0,"Press HEX Keys..");// 1st line display

 lcd_putstring16(1,"Key Pressed = ");// 2nd line display

while (1)

 {

 key = 0;

 for(i = 0; i < 4; i++)

 {

 // turn on COL output one by one

 col_write(rval[i]);

 // read rows - break when key press detected

 if (!(KEY_CTRL_PIN & (1<<ROW1)))

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 45

 break;

 key++;

 if (!(KEY_CTRL_PIN & (1<<ROW2)))

 break;

 key++;

 if (!(KEY_CTRL_PIN & (1<<ROW3)))

 break;

 key++;

 if (!(KEY_CTRL_PIN & (1<<ROW4)))

 break;

 key++;

 }

 if (key == 0x10)

 lcd_putstring16(1,"Key Pressed = ");

 else

 {

 lcd_gotoxy(1,14);

 lcd_putchar(keyPadMatrix[key]);

 }

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 46

Experiment No 7:-Generate PWM waveform and vary its duty cycle

LPC1768 PWM Module

LPC1768 has 6 PWM output pins which can be used as 6-Single edged or 3-Double edged.

There as seven match registers to support these 6 PWM output signals. Below block diagram

shows the PWM pins and the associated Match(Duty Cycle) registers.

PWM

Channel

Port

Pin
Pin Functions

Associated

PINSEL Register

Corresponding

Match Register

PWM_1 P2.0
0-GPIO, 1-PWM1[1], 2-TXD1,

3-

0,1 bits of

PINSEL4
MR1

PWM_2 P2.1
0-GPIO, 1-PWM1[2], 2-RXD1,

3-

2,3 bits of

PINSEL4
MR2

PWM_3 P2.2
0-GPIO, 1-PWM1[3], 2-CTS1,

3-TRACEDATA[3]

4,5 bits of

PINSEL4
MR3

PWM_4 P2.3
0-GPIO, 1-PWM1[4], 2-DCD1,

3-TRACEDATA[2]

6,7 bits of

PINSEL4
MR4

PWM_5 P2.4
0-GPIO, 1-PWM1[5], 2-DSR1,

3-TRACEDATA[1]

8,9 bits of

PINSEL4
MR5

PWM_6 P2.5
0-GPIO, 1-PWM1[6], 2-DTR1,

3-TRACEDATA[0]

10,11 bits of

PINSEL4
MR6

LPC1768 PWM Registers

The below table shows the registers associated with LPC1768 PWM.

Register Description

IR
Interrupt Register: The IR can be read to identify which of eight possible interrupt

sources are pending. Writing Logic-1 will clear the corresponding interrupt.

TCR
Timer Control Register: The TCR is used to control the Timer Counter

functions(enable/disable/reset).

TC Timer Counter: The 32-bit TC is incremented every PR+1 cycles of PCLK. The TC is

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 47

controlled through the TCR.

PR Prescalar Register: This is used to specify the Prescalar value for incrementing the TC.

PC
Prescale Counter: The 32-bit PC is a counter which is incremented to the value stored

in PR. When the value in PR is reached, the TC is incremented.

MCR
Match Control Register: The MCR is used to control the reseting of TC and generating

of interrupt whenever a Match occurs.

MR0 Match Register: This register hold the max cycle Time(Ton+Toff).

MR1-

MR6

Match Registers: These registers holds the Match value(PWM Duty) for

corresponding PWM channels(PWM1-PWM6).

PCR
PWM Control Register: PWM Control Register. Enables PWM outputs and selects

PWM channel types as either single edge or double edge controlled.

LER Load Enable Register: Enables use of new PWM values once the match occurs.

Steps to Configure PWM

1. Configure the GPIO pins for PWM operation in respective PINSEL register.

2. Configure TCR to enable the Counter for incrementing the TC, and Enable the PWM

block.

3. Set the required pre-scalar value in PR. In our case it will be zero.

4. Configure MCR to reset the TC whenever it matches MR0.

5. Update the Cycle time in MR0. In our case it will be 100.

6. Load the Duty cycles for required PWMx channels in respective match registers MRx(x:

1-6).

7. Enable the bits in LER register to load and latch the new match values.

8. Enable the required pwm channels in PCR register.

Main code:-

#include <lpc17xx.h>

void delay_ms(unsigned int ms)

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 48

{

 unsigned int i,j;

 for(i=0;i<ms;i++)

 for(j=0;j<60000;j++);

}

#define SBIT_CNTEN 0

#define SBIT_PWMEN 2

#define SBIT_PWMMR0R 1

#define SBIT_PWMENA1 9

#define PWM_1 0 //P2_0 (0-1 Bits of PINSEL4)

int main(void)

{

 int dutyCycle;

 SystemInit();

 /* Cofigure pins(P2_0) for PWM mode. */

 LPC_PINCON->PINSEL4 = (1<<PWM_1) ;

 /* Enable Counters,PWM module */

 LPC_PWM1->TCR = (1<<SBIT_CNTEN) | (1<<SBIT_PWMEN);

 LPC_PWM1->PR = 0x00; /* No Prescalar */

 LPC_PWM1->MCR = (1<<SBIT_PWMMR0R); /*Reset on PWMMR0, reset TC if it

matches MR0 */

 LPC_PWM1->MR0 = 100; /* set PWM cycle(Ton+Toff)=100) */

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 49

 /* Enable the PWM output pins for PWM_1-PWM_4(P2_0 - P2_3) */

 LPC_PWM1->PCR = (1<<SBIT_PWMENA1);

 while(1)

 {

 for(dutyCycle=0; dutyCycle<100; dutyCycle++)

 {

 LPC_PWM1->MR1 = dutyCycle; /* Increase the dutyCycle from 0-100 */

 delay_ms(5);

 }

 for(dutyCycle=100; dutyCycle>0; dutyCycle--)

 {

 LPC_PWM1->MR1 = dutyCycle; /* Decrease the dutyCycle from 100-0 */

 delay_ms(5);

 }

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 50

Experiment No 8:-Using external interrupt switches toggle the led’s

EINTx Pins

LPC1768 has four external interrupts EINT0-EINT3.

As LPC1768 pins are multi functional, these four interrupts are available on multiple pins.

Below table shows mapping of EINTx pins.

Port Pin PINSEL_FUNC_0 PINSEL_FUNC_1 PINSEL_FUNC_2 PINSEL_FUNC_3

P2.10 GPIO EINT0 NMI

P2.11 GPIO EINT1 I2STX_CLK

P2_12 GPIO EINT2 I2STX_WS

P2.13 GPIO EINT3 I2STX_SDA

EINT Registers

Below table shows the registers associated with LPC1768 external interrupts.

Register Description

PINSELx To configure the pins as External Interrupts

EXTINT
External Interrupt Flag Register contains interrupt flags for EINT0,EINT1, EINT2

& EINT3.

EXTMODE External Interrupt Mode register(Level/Edge Triggered)

http://exploreembedded.com/wiki/File:Lpc1768_external_interrupts.png

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 51

EXTPOLAR External Interrupt Polarity(Falling/Rising Edge, Active Low/High)

EXTINT

31:4 3 2 1 0

RESERVED EINT3 EINT2 EINT1 EINT0

EINTx: Bits will be set whenever the interrupt is detected on the particular interrupt pin.

If the interrupts are enabled then the control goes to ISR.

Writing one to specific bit will clear the corresponding interrupt.

EXTMODE

31:4 3 2 1 0

RESERVED EXTMODE3 EXTMODE2 EXTMODE1 EXTMODE0

EXTMODEx: This bits is used to select whether the EINTx pin is level or edge Triggered

0: EINTx is Level Triggered.

1: EINTx is Edge Triggered.

EXTPOLA

R

31:4 3 2 1 0

RESERVED EXTPOLAR3 EXTPOLAR2 EXTPOLAR1 EXTPOLAR0

EXTPOLARx: This bits is used to select polarity(LOW/HIGH, FALLING/RISING) of the

EINTx interrupt depending on the EXTMODE register.

0: EINTx is Active Low or Falling Edge (depending on EXTMODEx).

1: EINTx is Active High or Rising Edge (depending on EXTMODEx).

Steps to Configure Interrupts

1. Configure the pins as external interrupts in PINSELx register.

2. Clear any pending interrupts in EXTINT.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 52

3. Configure the EINTx as Edge/Level triggered in EXTMODE register.

4. Select the polarity(Falling/Rising Edge, Active Low/High) of the interrupt in

EXTPOLAR register.

5. Finally enable the interrupts by calling NVIC_EnableIRQ() with IRQ number.

Main code:-

#include <lpc17xx.h>

#define PINSEL_EINT1 22 // interrupt 1

#define PINSEL_EINT2 24 // interrupt 2

#define LED1 25 // led at p1.25

#define LED2 26 // led at p1.26

#define SBIT_EINT1 1 //extint bit 1

#define SBIT_EINT2 2 //extint bit 2

#define SBIT_EXTMODE1 1 //extint mode bit 1

#define SBIT_EXTMODE2 2 //extint mode bit 2

#define SBIT_EXTPOLAR1 1 //extint polarity mode bit 1

#define SBIT_EXTPOLAR2 2 //extint polarity mode bit 2

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 53

void EINT1_IRQHandler(void)

{

 LPC_SC->EXTINT = (1<<SBIT_EINT1); /* Clear Interrupt Flag */

 LPC_GPIO1->FIOPIN ^= (1<< LED1); /* Toggle the LED1 everytime INTR1 is generated

*/

}

void EINT2_IRQHandler(void)

{

 LPC_SC->EXTINT = (1<<SBIT_EINT2); /* Clear Interrupt Flag */

 LPC_GPIO1->FIOPIN ^= (1<< LED2); /* Toggle the LED2 everytime INTR2 is generated

*/

}

int main()

{

 SystemInit();

 LPC_SC->EXTINT = (1<<SBIT_EINT1) | (1<<SBIT_EINT2); /* Clear Pending

interrupts */

 LPC_PINCON->PINSEL4 = (1<<PINSEL_EINT1) | (1<<PINSEL_EINT2); /* Configure

P2_11,P2_12 as EINT1/2 */

 LPC_SC->EXTMODE = (1<<SBIT_EXTMODE1) | (1<<SBIT_EXTMODE2); /*

Configure EINTx as Edge Triggered*/

 LPC_SC->EXTPOLAR = (1<<SBIT_EXTPOLAR1)| (1<<SBIT_EXTPOLAR2); /*

Configure EINTx as Falling Edge */

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 54

 LPC_GPIO1->FIODIR = (1<<LED1) | (1<<LED2); /* Configure LED pins as

OUTPUT */

 LPC_GPIO1->FIOPIN = 0x00;

 NVIC_EnableIRQ(EINT1_IRQn); /* Enable the EINT1,EINT2 interrupts */

 NVIC_EnableIRQ(EINT2_IRQn);

 while(1)

 {

 // Do nothing

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 55

Experiment No 9:-Display 0-F in 7 segment display

The displays common pin is generally used to identify which type of 7-segment display it is. As

each LED has two connecting pins, one called the “Anode” and the other called the “Cathode”,

there are therefore two types of LED 7-segment display called: Common Cathode (CC) and

Common Anode (CA).

The difference between the two displays, as their name suggests, is that the common cathode has

all the cathodes of the 7-segments connected directly together and the common anode has all the

anodes of the 7-segments connected together and is illuminated as follows.

1. The Common Cathode (CC) – In the common cathode display, all the cathode connections of

the LED segments are joined together to logic “0” or ground. The individual segments are

illuminated by application of a “HIGH”, or logic “1” signal via a current limiting resistor to

forward bias the individual Anode terminals (a-g).

Common Cathode 7-segment Display

2. The Common Anode (CA) – In the common anode display, all the anode connections of the

LED segments are joined together to logic “1”. The individual segments are illuminated by

applying a ground, logic “0” or “LOW” signal via a suitable current limiting resistor to the

Cathode of the particular segment (a-g).

Common Anode 7-segment Display

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 56

In general, common anode displays are more popular as many logic circuits can sink more

current than they can source. Also note that a common cathode display is not a direct

replacement in a circuit for a common anode display and vice versa, as it is the same as

connecting the LEDs in reverse, and hence light emission will not take place.

Depending upon the decimal digit to be displayed, the particular set of LEDs is forward biased.

For instance, to display the numerical digit 0, we will need to light up six of the LED segments

corresponding to a, b, c, d, e and f. Thus the various digits from 0 through 9 can be displayed

using a 7-segment display as shown.

7-Segment Display Segments for all Numbers.

Then for a 7-segment display, we can produce a truth table giving the individual segments that

need to be illuminated in order to produce the required decimal digit from 0 through 9 as shown

below.

7-segment Display Truth Table

Decimal

Digit

Individual Segments Illuminated

a b c d e f g

0 × × × × × ×

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 57

1 × ×

2 × × × × ×

3 × × × × ×

4 × × × ×

5 × × × × ×

6 × × × × × ×

7 × × ×

8 × × × × × × ×

9 × × × × ×

Driving a 7-segment Display

Although a 7-segment display can be thought of as a single display, it is still seven individual

LEDs within a single package and as such these LEDs need protection from over current. LEDs

produce light only when it is forward biased with the amount of light emitted being proportional

to the forward current.

This means then that an LEDs light intensity increases in an approximately linear manner with

an increasing current. So this forward current must be controlled and limited to a safe value by

an external resistor to prevent damage to the LED segments.

The forward voltage drop across a red LED segment is very low at about 2-to-2.2 volts, (blue

and white LEDs can be as high as 3.6 volts) so to illuminate correctly, the LED segments should

be connected to a voltage source in excess of this forward voltage value with a series resistance

used to limit the forward current to a desirable value.

Typically for a standard red coloured 7-segment display, each LED segment can draw about 15

mA to illuminated correctly, so on a 5 volt digital logic circuit, the value of the current limiting

resistor would be about 200Ω (5v – 2v)/15mA, or 220Ω to the nearest higher preferred value.

So to understand how the segments of the display are connected to a 220Ω current limiting

resistor consider the circuit below.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 58

For illuminate a digit we have to

make a appropriate port Low

(send 0).Here 1st make P0.8 or

P4.28 High. It will send control

active signal to segment. Then

initially make

P1.0,P1.1,P1.4,P1.8,P1.9,P1.10,

P1.14 all high. Now all the

digits become off. Then make

respected segment low by

sending CLR signal to GPIO.

This cause the segment to illuminate.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 59

Main Code:-

#include <lpc17xx.h>

void delay_ms(unsigned int ms)

{

 unsigned int i,j;

 for(i=0;i<ms;i++)

 for(j=0;j<40000;j++);

}

/* start the main program */

int main()

{

 SystemInit(); //Clock and PLL configuration

 LPC_GPIO0->FIODIR = 0x00000100; //Configure the PORT0 pins as OUTPUT;

 LPC_GPIO1->FIODIR = 0x00004713;// all segment as output

 while(1)

 {

 LPC_GPIO0->FIOSET = 0x00000100; // Make all the Port pins as high

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00004000;// set g to make 0

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 60

 LPC_GPIO1->FIOSET = 0x00004701;//set a,d,e,f,g to make 1

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000410;//set c,f to make 2

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000600;//set e and f to make 3

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000301;//set a,d,e to make 4

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000202;//set b,e to make 5

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000002;//set b to make 6

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00004700;//set d,e,f,g to make 7

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000000;//set all 0 to make 8

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000300;//set e to make 9

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000100;//set d to make A

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000003;//set a,b to make b

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 61

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00004012;//set set b,c,g to make C

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000401;//set a,f to make d

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000012;//set b,c to make E

 delay_ms(200);

 LPC_GPIO1->FIOCLR = 0x00004713;//clear all segments

 LPC_GPIO1->FIOSET = 0x00000112;//set b,c,d to make F

 delay_ms(200);

 }

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 62

Experiment No 10:-Interface a switch and display status in LED, Relay and

Buzzer

Here switch is pulled up to +3.3 volt. So when pressed port should read active low

signal(0),normal condition is active high(1)

Main code:-

#include <lpc17xx.h>

#define SwitchPinNumber 11// port P2.11 connected to switch

#define LedPinNumber 19 //port 1.19-p1.26 connected to 8 leds

#define relayPinNumber 28 //port P1.28 connected to relay

#define buzzerPinNumber 27 //port P1.27 connected to buzzer

int main (void)

{

 uint32_t switchStatus;

 LPC_GPIO1->FIODIR = 0x1ff80000; /* P1.xx defined as Outputs */

 LPC_GPIO1->FIOCLR = 0x1ff80000; /* turn off all the LEDs&relay&buzzer */

 LPC_GPIO2->FIODIR = 0x00000000; /* P2.xx defined as input */

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 63

 while(1)

 {

 /* Turn On all the leds and wait for one second */

 switchStatus = (LPC_GPIO2->FIOPIN>>SwitchPinNumber) & 0x01 ; // Read the switch

status

 if(switchStatus == 0) //if switch pressed

 {

 LPC_GPIO1->FIOPIN =

(1<<buzzerPinNumber)|(1<<relayPinNumber)|(1<<LedPinNumber);//turn on led,relay and

buzzer

 }

 else //if switch released

 {

 LPC_GPIO1->FIOPIN =

(0<<buzzerPinNumber)|(0<<relayPinNumber)|(0<<LedPinNumber); //if switch released

led,relay,buzzer off

 }

}

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 64

Experiment No 11:-Interface SPI ADC and display Ambient temperature

Pin Assignment with LPC1768

SPI -

ADC

LPC1768

Lines
SPI - ADC

MCP

3202

CS P0.28

CLK P0.27

Dout P3.26

Din P3.25

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 65

Main code:-

#include <LPC17xx.H>

#include <stdint.h>

#include <stdio.h>

#include "delay.h"

#include "spi_manul.h"

#include "lcd.h"

#define pulse_val 2

main()

{

unsigned int spi_rsv=0;

float vin;

char buf[20];

 SystemInit ();

 lcd_init();

 lcd_str("SPI 3202-b");

 delay(60000);

 delay(60000);

 while(1)

 {

 lcd_clr();

 lcd_cmd(0x80);

 spi_rsv = spi_data1(15);

 vin = ((spi_rsv & 0xfff) * (3.3)) / 4096 ;

 sprintf(buf,"Temp: %0.2f degC",(vin*100));

 lcd_str(buf);

 delay(50000);

 delay(50000);

 }

}

SPI ADC data fetching program:-

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 66

#include <LPC17xx.H>

#include "delay.h"

#define pulse_val 2

#define CLK 1<<27

#defineCS 1<<28

#define DDOUT 26

#defineDOUT 1<<25

#defineDIN 1<<26

#define spi_stst 0

unsigned int spi_data(char sel)

{

 char clks = 4;

 LPC_GPIO0->FIODIR |= CS|CLK;

 LPC_GPIO3->FIODIR = DOUT;

 LPC_GPIO0->FIOSET = CS|CLK;

 LPC_GPIO3->FIOCLR = DOUT;

 nop_delay(100);

#if spi_stst

 if (LPC_GPIO3->FIOPIN & DIN)

 {

 return 'P';

 }

#endif

 LPC_GPIO0->FIOCLR = CS;

 nop_delay(pulse_val);

 while(clks)

 {

 LPC_GPIO0->FIOCLR = CLK;

 nop_delay(pulse_val);

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 67

 LPC_GPIO3->FIOPIN = (sel & 1) << DDOUT;

 sel = sel >> 1;

 LPC_GPIO0->FIOSET = CLK;

 nop_delay(pulse_val);

 clks--;

 }

 LPC_GPIO0->FIOCLR = CLK;

 nop_delay(pulse_val);

 if (!(LPC_GPIO3->FIOPIN & DIN))

 {

 return 'U';

 }

 clks = 12;

 while(clks)

 {

 clks--;

 LPC_GPIO0->FIOCLR = CLK;

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

 nop_delay(pulse_val);

 }

 nop_delay(pulse_val);

 if (!(LPC_GPIO3->FIOPIN & DIN))

 {

 return 'U';

 }

 return 'Z';

}

unsigned int spi_data1(char sel)

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 68

{

 unsigned int spi_reg=0;

 char clks = 12;

 LPC_GPIO0->FIODIR |= CS|CLK;

 LPC_GPIO3->FIODIR = DOUT;

 LPC_GPIO0->FIOSET = CS|CLK;

 LPC_GPIO3->FIOSET = DOUT;

 LPC_GPIO3->FIOPIN = DIN;

 nop_delay(100);

 LPC_GPIO0->FIOCLR = CS;

 //start condi

 LPC_GPIO0->FIOCLR = CLK;

 LPC_GPIO3->FIOSET = DOUT;

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

 nop_delay(5);

 //single mode

 LPC_GPIO0->FIOCLR = CLK;

 LPC_GPIO3->FIOSET = DOUT;

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

 nop_delay(5);

 //chanl 1

 LPC_GPIO0->FIOCLR = CLK;

 LPC_GPIO3->FIOSET = DOUT;

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 69

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

 nop_delay(5);

 //msb first

 LPC_GPIO0->FIOCLR = CLK;

 LPC_GPIO3->FIOSET = DOUT;

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

 nop_delay(5);

 //smpling

// LPC_GPIO0->FIOCLR = CLK;

// nop_delay(pulse_val);

// LPC_GPIO0->FIOSET = CLK;

// nop_delay(2);

 //null bit

 LPC_GPIO0->FIOCLR = CLK;

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

// while ((LPC_GPIO3->FIOPIN & DIN) == DIN);

// if(!(LPC_GPIO3->FIOPIN & DIN));

// {

// return 'U';

// }

 nop_delay(5);

 clks = 12;

 while(clks)

 {

 LPC_GPIO0->FIOCLR = CLK;

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 70

 nop_delay(pulse_val);

 LPC_GPIO0->FIOSET = CLK;

 if((LPC_GPIO3->FIOPIN & DIN))

 {

 spi_reg |= 1<<(clks-1);

 }

 else

 {

 spi_reg = spi_reg;

 }

 clks--;

 nop_delay(5);

 }

 nop_delay(1);

 return spi_reg;

}

LCD display program:-

#include <LPC17xx.H>

#include "delay.h"

#define RRW (7<<9)

#define DATA_L (15<<19)

void lcd_pin(void)

{

 LPC_GPIO0->FIODIR |= RRW|DATA_L;

}

void lcd_cmd(unsigned char cmd)

{

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 71

 LPC_GPIO0->FIOPIN =(((cmd & 0xf0)>> 4) << 19)| (1<<11);

 delay(200);

 LPC_GPIO0->FIOPIN =(((cmd & 0xf0)>> 4) << 19);

 LPC_GPIO0->FIOCLR |= RRW|DATA_L;

 delay(10);

 LPC_GPIO0->FIOPIN = (((cmd & 0xf)) << 19)| (1<<11);

 delay(200);

 LPC_GPIO0->FIOPIN = (((cmd & 0xf)) << 19);

}

void lcd_data(unsigned char cmd)

{

LPC_GPIO0->FIOPIN =(1<<9)|(((cmd & 0xf0)>> 4) << 19)| (1<<11);

 delay(200);

 LPC_GPIO0->FIOPIN =(((cmd & 0xf0)>> 4) << 19);

 LPC_GPIO0->FIOCLR |= RRW|DATA_L;

 delay(10);

 LPC_GPIO0->FIOPIN = (1<<9)|(((cmd & 0xf)) << 19)| (1<<11);

 delay(200);

 LPC_GPIO0->FIOPIN = (((cmd & 0xf)) << 19);

}

void lcd_init(void)

{

lcd_pin();

 lcd_cmd(0x03);

 delay(3000);

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 72

 lcd_cmd(0x03);

 delay(1000);

 lcd_cmd(0x03);

 delay(100);

 lcd_cmd(0x2);

 lcd_cmd(0x28);

 lcd_cmd(0x0e);

 lcd_cmd(0x06);

 lcd_cmd(0x01);

 delay(1);

}

void lcd_str(char *lstr)

{

 while(*lstr)

 {

 lcd_data(*lstr);

 lstr++;

 }

}

void lcd_clr(void)

{

 lcd_cmd(0x03);

 delay(10);

 lcd_cmd(0x2);

 lcd_cmd(0x28);

 lcd_cmd(0x0e);

 lcd_cmd(0x06);

 lcd_cmd(0x01);

 delay(10);

}

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 73

4. Viva Question

1. These are few very simple and general ARM processor interview questions
2. What are the types of CORTEX-M series ?
3. How do you select a specific CORTEX-M processor ?
4. What is Microprocessor?

Microprocessor is a CPU fabricated on a single chip program controlled device, which
fetched the instructions from memory, decodes and execute the instructions. Three basic
characteristic differentiate microprocessor.

5. Instruction Set: The set of instruction microprocessor can execute.
6. Bandwidth: The number of bit’s processed in a single instruction
7. Clock Speed: Given in MHz Megahertz, the clock speed determines how many instructions

per second the processor can execute.
8. In addition to this, microprocessors are classified as being RISC (Reduced Instruction Set

Computer) or CISC (Complex Instruction Set Computer).
9. What are the basic units of Microprocessor?

The basic units or block of microprocessor are ALU, an Array of Registers and control unit.
10. Give Examples for8/16/32-bit Microprocessor?

8-bit Processors- 8085, Z80, 6800
16-bit Processors- 8086, 68000, Z8000
32-bit Processors- 80386, 80486
64-bit Processors- Intel 64(x64), AMD64, IBM (Power PC), SUN (SPARC).

11. What are 1st/ 2nd/3rd/4th generation processors?
The processors made of PMOS, NMOS, HMOS, HCMOS technology are called 1st/
2nd/3rd/4th generation processor’s and are made up of 4, 8, 16, 32-bits.

12. What does microprocessor speed depends on?
The speed of microprocessor depends on various factors such as Data Bus Width (Number
of instruction it processes) and clock speed.

13. What is Software and Hardware?
The software is set of instruction or commands needed for performing a specific task by
programmable device or a computing machine. The hardware refers to the component or
device used to form computing machine in which software can be run and tested. Without
software hardware is idle machine.

14. Distinguish between microprocessor and microcontroller?
The microprocessor is a digital integrated circuit that can be programmed with a series of
instructions to perform a specified function on data. The microcontroller is tiny little
computer on single integrated circuit, which has memory, input-output on chip itself. So
we can say microprocessor can perform few functions but microcontroller can perform
many functions.

15. What are disadvantages of Microprocessor?
Microprocessor has limitation on size of data. Most microprocessor does not support
floating point operation.

16. What is the difference between microprocessor and microcontroller?
 op-codes and more bit handling instructions also microcontroller defined as a device that
includes microprocessor, memory and input-output signal lines in a single chip.

17. What is an Instruction?
An instruction is an order given to a computer processor by a computer program. At the
lowest level each instruction set is a sequence of 0s and 1s that describes a physical

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 74

operation that computer is to perform (such as “Add”) and depending on the particular
instruction type, the specification of special storage areas called registers that may
contain data be used in carrying out the instruction or the location in computer memory
of data.

18. What is clock cycle?
The speed of computer processor is determined by clock cycle, which is amount of time
between two pulses of an oscillator. In general, the higher number of pulses per second
the faster the computer processor will be able to process information.

19. ARM stands for Advanced RISC Machines ____________
a) Advanced Rate Machines

b) Advanced RISC Machines
c) Artificial Running Machines
d) Aviary Running Machines
View Answer

Answer: b
Explanation: ARM is a type of system architecture.

20. The main importance of ARM micro-processors is providing operation with ______
a) Low cost and low power consumption
b) Higher degree of multi-tasking
c) Lower error or glitches
d) Efficient memory management
View Answer
Answer: a
Explanation: The Stand alone feature of the ARM processors is that they’re economically
viable.

21. ARM processors where basically designed for _______
a) Main frame systems
b) Distributed systems
c) Mobile systems
d) Super computers
View Answer
Answer: c
Explanation: These ARM processors are designed for handheld devices.

22. The ARM processors doesn’t support Byte address ability ?
a) True
b) False
View Answer
Answer: b
Explanation: The ability to store data in the form of consecutive bytes.

23. The address space in ARM is ______
a) 224
b) 264
c) 216
d) 232
View Answer
Answer: d
Explanation: None.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 75

24. The address system supported by ARM systems is/are ______
a) Little Endian
b) Big Endian
c) X-Little Endian
d) Both Little & Big Endian
View Answer
Answer: d
Explanation: The way in which, the data gets stored in the system or the way of address
allocation is called as address system.

25. Memory can be accessed in ARM systems by _____ instructions.
i) Store
ii) MOVE
iii) Load
iv) arithmetic
v) logical
a) i,ii,iii
b) i,ii
c) i,iv,v
d) iii,iv,v
View Answer
Answer: b
Explanation: None.

26. RISC stands for _________
a) Restricted Instruction Sequencing Computer
b) Restricted Instruction Sequential Compiler
c) Reduced Instruction Set Computer
d) Reduced Induction Set Computer
View Answer
Answer: c
Explanation: This is a system architecture, in which the performance of the system is
improved by reducing the size of the instruction set.

27. In ARM, PC is implemented using ____
a) Caches
b) Heaps
c) General purpose register
d) Stack
View Answer

Answer: c
Explanation: PC is the place where the next instruction about to be executed is stored.

28. The additional duplicate register used in ARM machines are called as _______
a) Copied-registers
b) Banked registers
c) EXtra registers
d) Extential registers
View Answer
Answer: b
Explanation: The duplicate registers are used in situations of context switching.

Arm Microcontroller Lab Manual

DEPT OF ECE, HMSIT, TUMKUR 76

29. The banked registers are used for ______
a) Switching between supervisor and interrupt mode
b) Extended storing
c) Same as other general purpose registers
d) None of the mentioned
View Answer
Answer: a
Explanation: When switching from one mode to another, instead of storing the register
contents somewhere else it’ll be kept in the duplicate registers and the new values are
stored in the actual registers.

30. Each instruction in ARM machines is encoded into ____ Word.
a) 2 byte
b) 3 byte
c) 4 byte
d) 8 byte
View Answer
Answer: c
Explanation: The data is encrypted to make them secure.

31. All instructions in ARM are conditionally executed.
a) True
b) False
View Answer
Answer: a
Explanation: None.

32. The addressing mode where the EA of the operand is the contents of Rn is ______
a) Pre-indexed mode
b) Pre-indexed with write back mode
c) Post-indexed mode
d) None of the mentioned
View Answer

33. The effective address of the instruction written in Post-indexed mode, MOVE[Rn]+Rm is

a) EA = [Rn].
b) EA = [Rn + Rm].
c) EA = [Rn] + Rm
d) EA = [Rm] + Rn
View Answer
Answer: a
Explanation: Effective address is the address that the computer acquires from the current
instruction being executed.

	1: Display Hello word in UART 13
	ARM Cortex M3 Series:
	ARM was founded in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer, Acorn Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor family, and VLSI became the initial licensee. Subsequently, additional com...
	Nowadays ARM partners ship in excess of 2 billion ARM processors each year. Unlike many semiconductor companies, ARM does not manufacture processors or sell the chips directly. Instead it licenses the processor designs to business partners. This busin...

	Enable Hex File Generation
	Working with Flash Magic Software :-
	UART module
	Steps for Configuring UART0
	DC Motor Control using PWM of LPC1768
	Stepper motor
	How Stepper Motors Work
	LPC1768 ADC Block
	ADC Registers
	LPC1768 DAC Programming Tutorial
	LPC1768/LPC1769 DAC Block
	Pins relating to LPC1768 DAC block:

	DAC Registers in ARM Cortex-M3 LPC176x
	The DACR register in LPC1768

	Introduction 4x4 matrix keypad interface:-
	Basic Configuration

	LPC1768 PWM Module
	LPC1768 PWM Registers
	EINTx Pins
	EINT Registers
	Steps to Configure Interrupts
	Common Cathode 7-segment Display
	Common Anode 7-segment Display
	7-Segment Display Segments for all Numbers.
	7-segment Display Truth Table
	Driving a 7-segment Display
	Pin Assignment with LPC1768

