Module – 3

SQL: Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action triggers, Views in SQL, Schema change statements in SQL.
Database Application Development: Accessing databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures, Case study: The internet Bookshop.
Internet Applications: The three-Tier application architecture, the presentation layer, The Middle Tier
Textbook 1: Ch7.1 to 7.4; Textbook 2: 6.1 to 6.6, 7.5 to 7.7.
3.1 More Complex SQL Retrieval Queries
3.1.1 Comparisons Involving NULL and Three-Valued Logic

SQL has various rules for dealing with NULL values. NULL is used to represent a missing value, but that it usually has one of three different interpretations—value unknown (value exists but is not known, or it is not known whether or not the value exists), value not available (value exists but is purposely withheld), or value not applicable (the attribute does not apply to this tuple or is undefined for this tuple). Consider the following examples to illustrate each of the meanings of NULL.

1. Unknown value. A person’s date of birth is not known, so it is represented by NULL in the database. An example of the other case of unknown would be NULL for a person’s home phone because it is not known whether or not the person has a home phone.
2. Unavailable or withheld value. A person has a home phone but does not want it to be listed, so it is withheld and represented as NULL in the database.
3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a person who has no college degrees because it does not apply to that person.

It is often not possible to determine which of the meanings is intended; for example, a NULL for the home phone of a person can have any of the three meanings. Hence, SQL does not distinguish among the different meanings of NULL.

In general, each individual NULL value is considered to be different from every other NULL value in the various database records. When a record with NULL in one of its attributes is involved in a comparison operation, the result is considered to be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valued logic with values TRUE, FALSE, and UNKNOWN instead of the standard two-valued (Boolean) logic with values TRUE or FALSE. It is therefore necessary to define the results (or truth values) of three-valued logical expressions when the logical connectives AND, OR, and NOT are used. Table 3.1 shows the resulting values.

[image:]
Table 3.1 Logical Connectives in Three-Valued Logic

In Tables 3.1(a) and 3.1(b), the rows and columns represent the values of the results of comparison conditions, which would typically appear in the WHERE clause of an SQL query. Each expression result would have a value of TRUE, FALSE, or UNKNOWN. The result of combining the two values using the AND logical connective is shown by the entries in Table 3.1(a). Table 3.1(b) shows the result of using the OR logical connective. For example, the result of (FALSE AND UNKNOWN) is FALSE, whereas the result of (FALSE OR UNKNOWN) is UNKNOWN. Table 3.1(c) shows the result of the NOT logical operation. Notice that in standard Boolean logic, only TRUE or FALSE values are permitted; there is no UNKNOWN value.

Query 1. Retrieve the names of all employees who do not have supervisors.
SELECT Fname, Lname
FROM EMPLOYEE
WHERE Super_ssn IS NULL;

3.1.2 Nested Queries, Tuples, and Set/Multiset Comparisons
Some queries require that existing values in the database be fetched and then used in a comparison condition. Such queries can be conveniently formulated by using nested queries, which are complete select-from-where blocks within another SQL query. That other query is called the outer query. These nested queries can also appear in the WHERE clause or the FROM clause or the SELECT clause or other SQL clauses as needed. Q2A introduces the comparison operator IN, which compares a value v with a set (or multiset) of values V and evaluates to TRUE if v is one of the elements in V.

In Q2A, the first nested query selects the project numbers of projects that have an employee with last name ‘Smith’ involved as manager, whereas the second nested query selects the project numbers of projects that have an employee with last name ‘Smith’ involved as worker. In the outer query, we use the OR logical connective to retrieve a PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.
Q2A: 	SELECT DISTINCT Pnumber
FROM PROJECT
WHERE Pnumber IN
(SELECT Pnumber
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND Lname =‘Smith’)
OR
Pnumber IN
(SELECT Pno
FROM WORKS_ON, EMPLOYEE
WHERE Essn = Ssn AND Lname = ‘Smith’);

If a nested query returns a single attribute and a single tuple, the query result will be a single (scalar) value. In such cases, it is permissible to use = instead of IN for the comparison operator. In addition to the IN operator, a number of other comparison operators can be used to compare a single value v (typically an attribute name) to a set or multiset v (typically a nested query).

An example is the following query, which returns the names of employees whose salary is greater than the salary of all the employees in department 5:
SELECT Lname, Fname
FROM EMPLOYEE
WHERE Salary > ALL (SELECT Salary
FROM EMPLOYEE
WHERE Dno = 5);

In general, we can have several levels of nested queries. We can once again be faced with possible ambiguity among attribute names if attributes of the same name exist—one in a relation in the FROM clause of the outer query, and another in a relation in the FROM clause of the nested query. The rule is that a reference to an unqualified attribute refers to the relation declared in the innermost nested query.

Query 3. Retrieve the name of each employee who has a dependent with the same first name and is the same sex as the employee.
Q3: 	SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E
WHERE E.Ssn IN (SELECT D.Essn
FROM DEPENDENT AS D
WHERE E.Fname = D.Dependent_name AND E.Sex = D.Sex);

In the nested query of Q3, we must qualify E.Sex because it refers to the Sex attribute of EMPLOYEE from the outer query, and DEPENDENT also has an attribute called Sex. If there were any unqualified references to Sex in the nested query, they would refer to the Sex attribute of DEPENDENT. However, we would not have to qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nested query because the DEPENDENT relation does not have attributes called Fname and Ssn, so there is no ambiguity.

3.1.3 Correlated Nested Queries
Whenever a condition in the WHERE clause of a nested query references some attribute of a relation declared in the outer query, the two queries are said to be correlated. A correlated query better by considering that the nested query is evaluated once for each tuple (or combination of tuples) in the outer query. For example, Q3 is as follows: For each EMPLOYEE tuple, evaluate the nested query, which retrieves the Essn values for all DEPENDENT tuples with the same sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tuple is in the result of the nested query, then select that EMPLOYEE tuple.

IN comparison operators can always be expressed as a single block query. For example, Q3 may be written as in Q4A:

Q4A: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E, DEPENDENT AS D
WHERE E.Ssn = D.Essn AND E.Sex = D.Sex AND E.Fname = D.Dependent_name;

3.1.4 The EXISTS and UNIQUE Functions in SQL
EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence, they can be used in a WHERE clause condition. The EXISTS function in SQL is used to check whether the result of a nested query is empty (contains no tuples) or not.

The result of EXISTS is a Boolean value TRUE if the nested query result contains at least one tuple, or FALSE if the nested query result contains no tuples. We illustrate the use of EXISTS—and NOT EXISTS—with some examples. First, we formulate Query 3 in an alternative form that uses EXISTS as in Q4B:

Q4B: SELECT E.Fname, E.Lname
FROM EMPLOYEE AS E
WHERE EXISTS (SELECT *
FROM DEPENDENT AS D
WHERE E.Ssn = D.Essn AND E.Sex = D.Sex AND E.Fname = D.Dependent_name);

EXISTS and NOT EXISTS are typically used in conjunction with a correlated nested query. Q4B as follows: For each EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT tuples with the same Essn, Sex, and Dependent_name as the EMPLOYEE tuple; if at least one tuple EXISTS in the result of the nested query, then select that EMPLOYEE tuple. EXISTS(Q) returns TRUE if there is at least one tuple in the result of the nested query Q, and returns FALSE otherwise. On the other hand, NOT EXISTS (Q) returns TRUE if there are no tuples in the result of nested query Q, and returns FALSE otherwise. Next, we illustrate the use of NOT EXISTS.

Query 5. Retrieve the names of employees who have no dependents.
Q5: 	SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *
FROM DEPENDENT
WHERE Ssn = Essn);

In Q5, the correlated nested query retrieves all DEPENDENT tuples related to a particular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected because the WHERE-clause condition will evaluate to TRUE in this case. We can explain Q5 as follows: For each EMPLOYEE tuple, the correlated nested query selects all empty, no dependents are related to the employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lname.

Query 6. List the names of managers who have at least one dependent.
Q6: 	SELECT Fname, Lname
FROM EMPLOYEE
WHERE EXISTS (SELECT *
FROM DEPENDENT
WHERE Ssn = Essn)
AND
EXISTS (SELECT *
FROM DEPARTMENT
WHERE Ssn = Mgr_ssn);

Query 7A: Retrieve the name of each employee who works on all the projects controlled by department number 5 can be written using NOT EXISTS in SQL systems.

Q7A: 	SELECT Fname, Lname
FROM EMPLOYEE
WHERE NOT EXISTS ((SELECT Pnumber
FROM PROJECT
WHERE Dnum = 5)
EXCEPT (SELECT Pno
FROM WORKS_ON
WHERE Ssn = Essn));

In Q7A, the first subquery (which is not correlated with the outer query) selects all projects controlled by department 5, and the second subquery (which is correlated) selects all projects that the particular employee being considered works on.

3.1.5 Explicit Sets and Renaming in SQL
It is possible to use an explicit set of values in the WHERE clause, rather than a nested query. Such a set is enclosed in parentheses in SQL.

Query 8. Retrieve the Social Security numbers of all employees who work on project numbers 1, 2, or 3.
Q8: 	SELECT DISTINCT Essn
FROM WORKS_ON
WHERE Pno IN (1, 2, 3);

In SQL, it is possible to rename any attribute that appears in the result of a query by adding the qualifier AS followed by the desired new name. Hence, the AS construct can be used to alias both attribute and relation names in general, and it can be used in appropriate parts of a query. For example, Q9A shows how query can be slightly changed to retrieve the last name of each employee and his or her supervisor while renaming the resulting attribute names as Employee_name and Supervisor_name. The new names will appear as column headers for the query result.

Q9A: 	SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.Super_ssn = S.Ssn;

3.1.6 Joined Tables in SQL and Outer Joins

The concept of a joined table (or joined relation) was incorporated into SQL to permit users to specify a table resulting from a join operation in the FROM clause of a query. This construct may be easier to comprehend than mixing together all the select and join conditions in the WHERE clause. For example, consider query Q10, which retrieves the name and address of every employee who works for the ‘Research’ department. It may be easier to specify the join of the EMPLOYEE and DEPARTMENT relations in the WHERE clause, and then to select the desired tuples and attributes. This can be written in SQL as in Q10A:

Q10A: SELECT Fname, Lname, Address
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
WHERE Dname = ‘Research’;

The FROM clause in Q10A contains a single joined table. The attributes of such a table are all the attributes of the first table, EMPLOYEE, followed by all the attributes of the second table, DEPARTMENT. The concept of a joined table also allows the user to specify different types of join, such as NATURAL JOIN and various types of OUTER JOIN. In a NATURAL JOIN on two relations R and S, no join condition is specified; an implicit EQUIJOIN condition for each pair of attributes with the same name from R and S is created.

If the names of the join attributes are not the same in the base relations, it is possible to rename the attributes so that they match, and then to apply NATURAL JOIN. In this case, the AS construct can be used to rename a relation and all its attributes in the FROM clause. This is illustrated in Q10B, where the DEPARTMENT relation is renamed as DEPT and its attributes are renamed as Dname, Dno (to match the name of the desired join attribute Dno in the EMPLOYEE table), Mssn, and Msdate. The implied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno, because this is the only pair of attributes with the same name after renaming:

Q10B: SELECT Fname, Lname, Address
FROM (EMPLOYEE NATURAL JOIN
(DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))
WHERE Dname = ‘Research’;

The default type of join in a joined table is called an inner join, where a tuple is included in the result only if a matching tuple exists in the other relation. For example, If the user requires that all employees be included, a different type of join called OUTER JOIN must be used explicitly. There are several variations of OUTER JOIN. In the SQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in a joined table, as illustrated in Q11B:

Q11B: SELECT E.Lname AS Employee_name, S.Lname AS Supervisor_name
FROM (EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S
ON E.Super_ssn = S.Ssn);

In SQL, the options available for specifying joined tables include INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. The keyword CROSS JOIN is used to specify the CARTESIAN PRODUCT operation, although this should be used only with the utmost care because it generates all possible tuple combinations. It is also possible to nest join specifications; that is, one of the tables in a join may itself be a joined table. This allows the specification of the join of three or more tables as a single joined table, which is called a multiway join.

For example, Q12A is a different way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:
Q12A: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber)
JOIN EMPLOYEE ON Mgr_ssn = Ssn)
WHERE Plocation = ‘Stafford’;

3.1.7 Aggregate Functions in SQL
Aggregate functions are used to summarize information from multiple tuples into a single-tuple summary. Grouping is used to create subgroups of tuples before summarization. Grouping and aggregation are required in many database of built-in aggregate functions exist: COUNT, SUM, MAX, MIN, and AVG. The COUNT function returns the number of tuples or values as specified in a query.

The functions SUM, MAX, MIN, and AVG can be applied to a set or multiset of numeric values and return, respectively, the sum, maximum value, minimum value, and average (mean) of those values. These functions can be used in the SELECT clause or in a HAVING clause (which we introduce later). The functions MAX and MIN can also be used with attributes that have nonnumeric domains if the domain values have a total ordering among one another. We illustrate the use of these functions with several queries.

Query 13. Find the sum of the salaries of all employees, the maximum salary, the minimum salary, and the average salary.
Q13: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM EMPLOYEE;

This query returns a single-row summary of all the rows in the EMPLOYEE table. We could use AS to rename the column names in the resulting single-row table; for example, as in Q13A.
Q13A: SELECT SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal,
MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_Sal
FROM EMPLOYEE;

If we want to get the preceding aggregate function values for employees of a specific department—say, the ‘Research’ department—we can write Query 14, where the EMPLOYEE tuples are restricted by the WHERE clause to those employees who work for the ‘Research’ department.

Query 14. Find the sum of the salaries of all employees of the ‘Research’ department, as well as the maximum salary, the minimum salary, and the average salary in this department.
Q14: SELECT SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)
FROM (EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)
WHERE Dname = ‘Research’;

Queries 15 and 16. Retrieve the total number of employees in the company (Q15) and the number of employees in the ‘Research’ department (Q16).

Q15: SELECT COUNT (*)
FROM EMPLOYEE;

Q16: SELECT COUNT (*)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO = DNUMBER AND DNAME = ‘Research’;

Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number of rows in the result of the query. We may also use the COUNT function to count values in a column rather than tuples, as in the next example.

Query 17. Count the number of distinct salary values in the database.
Q17: SELECT COUNT (DISTINCT Salary)
FROM EMPLOYEE;

If we write COUNT (SALARY) instead of COUNT (DISTINCT SALARY) in Q17, then duplicate values will not be eliminated. However, any tuples with NULL for SALARY will not be counted. In general, NULL values are discarded when aggregate functions are applied to a particular column (attribute); the only exception is for COUNT (*) because tuples instead of values are counted. In the previous examples, any Salary values that are NULL are not included in the aggregate function calculation.

The general rule is as follows: when an aggregate function is applied to a collection of values, NULLs are removed from the collection before the calculation; if the collection becomes empty because all values are NULL, the aggregate function will return NULL.

3.1.8 Grouping: The GROUP BY and HAVING Clauses
In many cases we want to apply the aggregate functions to subgroups of tuples in a relation, where the subgroups are based on some attribute values. For example, we may want to find the average salary of employees in each department or the number of employees who work on each project. In these cases we need to partition the relation into nonoverlapping subsets (or groups) of tuples. Each group (partition) will consist of the tuples that have the same value of some attribute(s), called the grouping attribute(s).

SQL has a GROUP BY clause for this purpose. The GROUP BY clause specifies the grouping attributes, which should also appear in the SELECT clause, so that the value resulting from applying each aggregate function to a group of tuples appears along with the value of the grouping attribute(s).

Query 18. For each department, retrieve the department number, the number of employees in the department, and their average salary.
Q18: SELECT Dno, COUNT (*), AVG (Salary)
FROM EMPLOYEE
GROUP BY Dno;

In Q18, the EMPLOYEE tuples are partitioned into groups—each group having the same value for the GROUP BY attribute Dno. Hence, each group contains the employees who work in the same department. The COUNT and AVG functions are applied to each such group of tuples. Notice that the SELECT clause includes only the grouping attribute and the aggregate functions to be applied on each group of tuples.

[image:]
Figure 3.2(a) illustrates how grouping works and shows the result of Q18.

Sometimes we want to retrieve the values of these functions only for groups that satisfy certain conditions. For example, suppose that we want the projects with more than two employees appear in the result. SQL provides a HAVING clause, which can appear in conjunction with a GROUP BY clause, for this purpose. HAVING provides a condition on the summary information regarding the group of tuples associated with each value of the grouping attributes. Only the groups that satisfy the condition are retrieved in the result of the query. This is illustrated by Query 18’.

Query 18’. For each project on which more than two employees work, retrieve the project number, the project name, and the number of employees who work on the project.
Q18`: 	SELECT Pnumber, Pname, COUNT (*)
FROM PROJECT, WORKS_ON
WHERE Pnumber = Pno
GROUP BY Pnumber, Pname
HAVING COUNT (*) > 2;

Notice that although selection conditions in the WHERE clause limit the tuples to which functions are applied, the HAVING clause serves to choose whole groups. Figure 3.2(b) illustrates the use of HAVING and displays the result of Q18`.

[image:]
Figure 3.2(b): The use of HAVING and displays the result of Q18`.

Query 19. For each department that has more than five employees, retrieve the department number and the number of its employees who are making more than $40,000.
Q19: SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000 AND Dno IN
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)
GROUP BY Dno;

3.1.9 Other SQL Constructs: WITH and CASE
The WITH clause allows a user to define a table that will only be used in a particular query; it is somewhat similar to creating a view that will be used only in one query and then dropped. This construct was introduced as a convenience in SQL:99 and may not be available in all SQL based DBMSs. Queries using WITH can generally be written using other SQL constructs. For example, we can rewrite Q19 as Q19′:

Q19′: WITH BIGDEPTS (Dno) AS
(SELECT Dno
FROM EMPLOYEE
GROUP BY Dno
HAVING COUNT (*) > 5)
SELECT Dno, COUNT (*)
FROM EMPLOYEE
WHERE Salary>40000 AND Dno IN BIGDEPTS
GROUP BY Dno;

In Q19′, we defined in the WITH clause a temporary table BIG_DEPTS whose result holds the Dno’s of departments with more than five employees, then used this table in the subsequent query. Once this query is executed, the temporary table BIGDEPTS is discarded. SQL also has a CASE construct, which can be used when a value can be different based on certain conditions. This can be used in any part of an SQL query where a value is expected, including when querying, inserting or updating tuples.

Query 20: Suppose we want to give employees different raise amounts depending on which department they work for; for example, employees in department 5 get a $2,000 raise, those in department 4 get $1,500 and those in department 1 get $3,000. Then we could re-write the update operation:

UPDATE 	EMPLOYEE
SET 		Salary =
CASE 		WHEN Dno = 5 THEN Salary + 2000
WHEN Dno = 4 THEN Salary + 1500
WHEN Dno = 1 THEN Salary + 3000
ELSE Salary + 0;

3.1.10 Recursive Queries in SQL
A recursive relationship between tuples of the same type is the relationship between an employee and a supervisor. This relationship is described by the foreign key Super_ssn of the EMPLOYEE relation, and it relates each employee tuple (in the role of supervisee) to another employee tuple (in the role of supervisor).

Query 21: Retrieve all supervisees of a supervisory employee e at all levels—that is, all employees e′ directly supervised by e, all employees e′ directly supervised by each employee e′, all employees e″′ directly supervised by each employee e″, and so on.
 Q21: WITH RECURSIVE SUP_EMP (SupSsn, EmpSsn) AS (SELECT SupervisorSsn, Ssn
 FROM EMPLOYEE
 UNION
 SELECT E.Ssn, S.SupSsn
 FROM EMPLOYEE AS E, SUP_EMP AS S
 WHERE E.SupervisorSsn = S.EmpSsn)
 SELECT*
 FROM SUP_EMP;

In Q21, we are defining a view SUP_EMP that will hold the result of the recursive query. The view is initially empty. It is first loaded with the first level (supervisor,supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM EMPLOYEE), which is called the base query. This will be combined via UNION with each successive level of supervisees through the second part, where the view contents are joined again with the base values to get the second level combinations, which are UNIONed with the first level. This is repeated with successive levels until a fixed point is reached, where no more tuples are added to the view. At this point, the result of the recursive query is in the view SUP_EMP.

3.2 Specifying Constraints as Assertions and Actions as Triggers
The two additional features of SQL: the CREATE ASSERTION statement and the CREATE TRIGGER statement.

3.2.1 Specifying General Constraints as Assertions in SQL
CREATE ASSERTION, which can be used to specify additional types of constraints that are outside the scope of the built-in relational model constraints (primary and unique keys, entity integrity, and referential integrity) .These built-in constraints, can be specified within the CREATE TABLE statement of SQL. In SQL, users can specify general constraints—those that do not fall into any of the categories via declarative assertions, using the CREATE ASSERTION statement. Each assertion is given a constraint name and is specified via a condition similar to the WHERE clause of an SQL query.

For example, to specify the constraint that the salary of an employee must not be greater than
the salary of the manager of the department that the employee works for in SQL, we can write the following assertion:
CREATE ASSERTION SALARY_CONSTRAINT
CHECK (NOT EXISTS (SELECT *
FROM EMPLOYEE E, EMPLOYEE M, DEPARTMENT D
WHERE E.Salary>M.Salary AND E.Dno = D.Dnumber AND D.Mgr_ssn = M.Ssn));

3.2.2 Introduction to Triggers in SQL
CREATE TRIGGER, which can be used to specify automatic actions that the database system will perform when certain events and conditions occur. This type of functionality is generally referred to as active databases.

For example, suppose we want to check whenever an employee’s salary is greater than the salary of his or her direct supervisor in the COMPANY database. Several events can trigger this rule: inserting a new employee record, changing an employee’s salary, or changing an employee’s supervisor. Suppose that the action to take would be to call an external stored procedure SALARY_VIOLATION, which will notify the supervisor. The trigger could then be written as in R5 below. Here we are using the syntax of the Oracle database system.

R5: 	CREATE TRIGGER SALARY_VIOLATION
BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN
ON EMPLOYEE
FOR EACH ROW
WHEN (NEW.SALARY > (SELECT SALARY FROM EMPLOYEE
WHERE SSN = NEW.SUPERVISOR_SSN))
INFORM_SUPERVISOR(NEW.Supervisor_ssn, NEW.Ssn);

The trigger is given the name SALARY_VIOLATION, which can be used to remove or deactivate the trigger later. A typical trigger which is regarded as an ECA (Event, Condition, and Action) rule has three components:
1. The event(s): These are usually database update operations that are explicitly applied to the database. In this example the events are: inserting a new employee record, changing an employee’s salary, or changing an employee’s supervisor. The person who writes the trigger must make sure that all possible events are accounted for. These events are specified after the keyword BEFORE in our example, which means that the trigger should be executed before the triggering operation is executed. An alternative is to use the keyword AFTER, which specifies that the trigger should be executed after the operation specified in the event is completed.
2. The condition that determines whether the rule action should be executed: Once the triggering event has occurred, an optional condition may be evaluated. If no condition is specified, the action will be executed once the event occurs. If a condition is specified, it is first evaluated, and only if it evaluates to true will the rule action be executed. The condition is specified in the WHEN clause of the trigger.
3. The action to be taken: The action is usually a sequence of SQL statements, but it could also be a database transaction or an external program that will be automatically executed. In this example, the action is to execute the stored procedure INFORM_SUPERVISOR.

Triggers can be used in various applications, such as maintaining database consistency, monitoring database updates, and updating derived data automatically.

3.3 Views (Virtual Tables) in SQL

3.3.1 Concept of a View in SQL
A view in SQL terminology is a single table that is derived from other tables. These other tables can be base tables or previously defined views. A view does not necessarily exist in physical form; it is considered to be a virtual table, in contrast to base tables, whose tuples are always physically stored in the database. This limits the possible update operations that can be applied to views, but it does not provide any limitations on querying a view.

3.3.2 Specification of Views in SQL
In SQL, the command to specify a view is CREATE VIEW. The view is given a (virtual) table name (or view name), a list of attribute names, and a query to specify the contents of the view. If none of the view attributes results from applying functions or arithmetic operations, we do not have to specify new attribute names for the view, since they would be the same as the names of the attributes of the defining tables in the default case. The views in V1 and V2 create virtual tables whose schemas are illustrated in Figure 3.3 when applied to the company database schema.

V1: 	CREATE VIEW WORKS_ON1 AS SELECT Fname, Lname, Pname, Hours
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE Ssn = Essn AND Pno = Pnumber;

V2: 	CREATE VIEW DEPT_INFO(Dept_name, No_of_emps, Total_sal) AS SELECT Dname, COUNT (*), SUM (Salary)
FROM DEPARTMENT, EMPLOYEE
WHERE Dnumber = Dno
GROUP BY Dname;

 [image:]
Figure 3.3: Two views specified on the database schema.

A view is supposed to be always up-to-date; if we modify the tuples in the base tables on which the view is defined, the view must automatically reflect these changes. Hence, the view does not have to be realized or materialized at the time of view definition but rather at the time when we specify a query on the view. It is the responsibility of the DBMS and not the user to make sure that the view is kept upto- date. We will discuss various ways the DBMS can utilize to keep a view up-todate in the next subsection.

If we do not need a view anymore, we can use the DROP VIEW command to dispose of it. For example, to get rid of the view V1, we can use the SQL statement in V1A:

V1A: DROP VIEW WORKS_ON1;

3.3.3 View Implementation, View Update, and Inline Views
The problem of how a DBMS can efficiently implement a view for efficient querying is complex. Two main approaches have been suggested.
1. One strategy, called query modification, involves modifying or transforming the view query into a query on the underlying base tables. The disadvantage of this approach is that it is inefficient for views defined via complex queries that are time-consuming to execute, especially if multiple view queries are going to be applied to the same view within a short period of time.
2. The second strategy, called view materialization, involves physically creating a temporary or permanent view table when the view is first queried or created and keeping that table on the assumption that other queries on the view will follow. In this case, an efficient strategy for automatically updating the view table when the base tables are updated must be developed in order to keep the view up-to-date. Techniques using the concept of incremental update have been developed for this purpose, where the DBMS can determine what new tuples must be inserted, deleted, or modified in a materialized view table when a database update is applied to one of the defining base tables.

Different strategies as to when a materialized view is updated are possible. The immediate update strategy updates a view as soon as the base tables are changed; the lazy update strategy updates the view when needed by a view query; and the periodic update strategy updates the view periodically. A user can always issue a retrieval query against any view.

In general, an update on a view defined on a single table without any aggregate functions can be mapped to an update on the underlying base table under certain conditions. For a view involving joins, an update operation may be mapped to update operations on the underlying base relations in multiple ways. Hence, it is often not possible for the DBMS to determine which of the updates is intended.

For example, consider the WORKS_ON1 view, and suppose that we issue the command to update the PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update is shown in UV1:
UV1: 	UPDATE WORKS_ON1
SET Pname = ‘ProductY’
WHERE Lname = ‘Smith’ AND Fname = ‘John’ AND Pname = ‘ProductX’;

3.3.4 Views as Authorization Mechanisms
Views can be used to hide certain attributes or tuples from unauthorized users. Suppose a certain user is only allowed to see employee information for employees who work for department 5; then we can create the following view DEPT5EMP and grant the user the privilege to query the view but not the base table EMPLOYEE itself. This user will only be able to retrieve employee information for employee tuples whose Dno = 5, and will not be able to see other employee tuples when the view is queried.
CREATE VIEW DEPT5EMP AS
SELECT *
FROM EMPLOYEE
WHERE Dno = 5;

In a similar manner, a view can restrict a user to only see certain columns; for example, only the first name, last name, and address of an employee may be visible as follows:
CREATE VIEW BASIC_EMP_DATA AS
SELECT Fname, Lname, Address
FROM EMPLOYEE;

Thus by creating an appropriate view and granting certain users access to the view and not the base tables, they would be restricted to retrieving only the data specified in the view.

3.4 Schema Change Statements in SQL
The schema evolution commands available in SQL, which can be used to alter a schema by adding or dropping tables, attributes, constraints, and other schema elements. This can be done while the database is operational and does not require recompilation of the database schema.

3.4.1 The DROP Command
The DROP command can be used to drop named schema elements, such as tables, domains, types, or constraints. One can also drop a whole schema if it is no longer needed by using the DROP SCHEMA command. There are two drop behavior options: CASCADE and RESTRICT.

For example, to remove the COMPANY database schema and all its tables, domains, and other elements, the CASCADE option is used as follows:

DROP SCHEMA COMPANY CASCADE;

If the RESTRICT option is chosen in place of CASCADE, the schema is dropped only if it has no elements in it; otherwise, the DROP command will not be executed. To use the RESTRICT option, the user must first individually drop each element in the schema, then drop the schema itself.

If a base relation within a schema is no longer needed, the relation and its definition can be deleted by using the DROP TABLE command. For example, if we no longer wish to keep track of dependents of employees in the COMPANY database, we can get rid of the DEPENDENT relation by issuing the following command:

DROP TABLE DEPENDENT CASCADE;

If the RESTRICT option is chosen instead of CASCADE, a table is dropped only if it is not referenced in any constraints (for example, by foreign key definitions in another relation) or views or by any other elements. With the CASCADE option, all such constraints, views, and other elements that reference the table being dropped are also dropped automatically from the schema, along with the table itself.

Notice that the DROP TABLE command not only deletes all the records in the table if successful, but also removes the table definition from the catalog. If it is desired to delete only the records but to leave the table definition for future use, then the DELETE command should be used instead of DROP TABLE. The DROP command can also be used to drop other types of named schema elements, such as constraints or domains.

3.4.2 The ALTER Command
The definition of a base table or of other named schema elements can be changed by using the ALTER command. For base tables, the possible alter table actions include adding or dropping a column (attribute), changing a column definition, and adding or dropping table constraints. For example, to add an attribute for keeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY schema, we can use the command

ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

image1.emf

image2.emf

image3.png

image4.emf

