Module – 5                                                                                                       DBMS

	Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. 

Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. 

Introduction to Database Recovery Protocols: Recovery Concepts, NO-UNDO/REDO recovery based on Deferred update, Recovery techniques based on immediate update, Shadow paging, Database backup and recovery from catastrophic failures

Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.



The concept of transaction provides a mechanism for describing logical units of database processing. Transaction processing systems are systems with large databases and hundreds of concurrent users executing database transactions. Examples of such systems include airline reservations, banking, credit card processing, online retail purchasing, stock markets, supermarket checkouts, and many other applications. 

5.1 Introduction to Transaction Processing

5.1.1 Single-User versus Multiuser Systems
A DBMS is single-user if at most one user at a time can use the system, and it is multiuser if many users can use the system— and hence access the database—concurrently. Single-user DBMSs are mostly restricted to personal computer systems; most other DBMSs are multiuser. 

Multiple users can access databases—and use computer systems—simultaneously because of the concept of multiprogramming, which allows the operating system of the computer to execute multiple programs—or processes—at the same time. A single central processing unit (CPU) can only execute at most one process at a time. However, multiprogramming operating systems execute some commands from one process, then suspend that process and execute some commands from the next process, and so on. If the computer system has multiple hardware processors (CPUs), parallel processing of multiple processes is possible, as illustrated by processes C and D in Figure 5.1.

[image: ]

Figure 5.1: Interleaved processing versus parallel processing of concurrent
transactions.


5.1.2 Transactions, Database Items, Read and Write Operations, and DBMS Buffers

A transaction is an executing program that forms a logical unit of database processing. A transaction includes one or more database access operations—these can include insertion, deletion, modification (update), or retrieval operations. One way of specifying the transaction boundaries is by specifying explicit begin transaction and end transaction statements in an application program; in this case, all database access operations between the two are considered as forming one transaction. If the database operations in a transaction do not update the database but only retrieve data, the transaction is called a read-only transaction; otherwise it is known as a read-write transaction.

A database is basically represented as a collection of named data items. The size of a data item is called its granularity. A data item can be a database record, but it can also be a larger unit such as a whole disk block, or even a smaller unit such as an individual field (attribute) value of some record in the database. The transaction processing concepts we discuss are independent of the data item granularity (size) and apply to data items in general.

Using this simplified database model, the basic database access operations that a transaction can include are as follows:
· read_item(X). Reads a database item named X into a program variable. To simplify our notation, we assume that the program variable is also named X.
· write_item(X). Writes the value of program variable X into the database item named X.

The basic unit of data transfer from disk to main memory is one disk page (disk block). Executing a read_item(X) command includes the following steps:
1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if that disk block is not already in some main memory buffer). The size of the buffer is the same as the disk block size.
3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:
1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if that disk block is not already in some main memory buffer).
3. Copy item X from the program variable named X into its correct location in the buffer.
4. Store the updated disk block from the buffer back to disk (either immediately or at some later point in time).

It is step 4 that actually updates the database on disk. Sometimes the buffer is not immediately stored to disk, in case additional changes are to be made to the buffer. The DBMS will maintain in the database cache a number of data buffers in main memory. Each buffer typically holds the contents of one database disk block, which contains some of the database items being processed.

When these buffers are all occupied, and additional database disk blocks must be copied into memory, some buffer replacement policy is used to choose which of the current occupied buffers is to be replaced. Some commonly used buffer replacement policies are LRU (least recently used). If the chosen buffer has been modified, it must be written back to disk before it is reused. There are also buffer replacement policies that are specific to DBMS characteristics. 

A transaction includes read_item and write_item operations to access and update the database. Figure 5.2 shows examples of two very simple transactions. The read-set of a transaction is the set of all items that the transaction reads, and the write-set is the set of all items that the transaction writes. For example, the read-set of T1 in Figure 5.2 is {X, Y} and its write-set is also {X, Y}.
[image: ]

Figure 5.2: Two sample transactions.
(a) Transaction T1.
(b) Transaction T2.

5.1.3 Why Concurrency Control Is Needed
Several problems can occur when concurrent transactions execute in an uncontrolled manner. We illustrate some of these problems by referring to a much simplified airline reservations database in which a record is stored for each airline flight. Each record includes the number of reserved seats on that flight as a named (uniquely identifiable) data item, among other information. Figure 5.2(a) shows a transaction T1 that transfers N reservations from one flight whose number of reserved seats is stored in the database item named X to another flight whose number of reserved seats is stored in the database item named Y. Figure 5.2(b) shows a simpler transaction T2 that just reserves M seats on the first flight (X) referenced in transaction T1. 

For concurrency control purposes, a transaction is a particular execution of a program on a specific date, flight, and number of seats. In Figures 5.2(a) and (b), the transactions T1 and T2 are specific executions of the programs that refer to the specific flights whose numbers of seats are stored in data items X and Y in the database. 

The Lost Update Problem. This problem occurs when two transactions that access the same database items have their operations interleaved in a way that makes the value of some database items incorrect. Suppose that transactions T1 and T2 are submitted at approximately the same time, and suppose that their operations are interleaved as shown in Figure 5.3(a); then the final value of item X is incorrect because T2 reads the value of X before T1 changes it in the database, and hence the updated value resulting from T1 is lost. For example, if X = 80 at the start (originally there were 80 reservations on the flight), N = 5 (T1 transfers 5 seat reservations from the flight corresponding to X to the flight corresponding to Y), and M = 4 (T2 reserves 4 seats on X), the final result should be X = 79. However, in the interleaving of operations shown in Figure 20.3(a), it is X = 84 because the update in T1 that removed the five seats from X was lost.

The Temporary Update (or Dirty Read) Problem. This problem occurs when one transaction updates a database item and then the transaction fails for some reason. Meanwhile, the updated item is accessed (read) by another transaction before it is changed back (or rolled back) to its original value. Figure 5.3(b) shows an example where T1 updates item X and then fails before completion, so the system must roll back X to its original value. Before it can do so, however, transaction T2 reads the temporary value of X, which will not be recorded permanently in the database because of the failure of T1. The value of item X that is read by T2 is called dirty data because it has been created by a transaction that has not completed and committed yet; hence, this problem is also known as the dirty read problem.

The Incorrect Summary Problem. If one transaction is calculating an aggregate summary function on a number of database items while other transactions are updating some of these items, the aggregate function may calculate some values before they are updated and others after they are updated. For example, suppose that a transaction T3 is calculating the total number of reservations on all the flights; meanwhile, transaction T1 is executing. If the interleaving of operations shown in Figure 5.3(c) occurs, the result of T3 will be off by an amount N because T3 reads the value of X after N seats have been subtracted from it but reads the value of Y before those N seats have been added to it.

[image: ]
Figure 5.3: Some problems that occur when concurrent execution is uncontrolled. 
(a) The lost update problem. (b) The temporary update problem. (c) The incorrect summary problem.

The Unrepeatable Read Problem. Another problem that may occur is called unrepeatable read, where a transaction T reads the same item twice and the item is changed by another transaction T′ between the two reads. Hence, T receives different values for its two reads of the same item. This may occur, for example, if during an airline reservation transaction, a customer inquires about seat availability on several flights. When the customer decides on a particular flight, the transaction then reads the number of seats on that flight a second time before completing the reservation, and it may end up reading a different value for the item.

5.1.4 Why Recovery Is Needed
The system is responsible for making sure that either all the operations in the transaction are completed successfully and their effect is recorded permanently in the database, or that the transaction does not have any effect on the database or any other transactions. In the first case, the transaction is said to be committed, whereas in the second case, the transaction is aborted. 

The DBMS must not permit some operations of a transaction T to be applied to the database while other operations of T are not, because the whole transaction is a logical unit of database processing. If a transaction fails after executing some of its operations but before executing all of them, the operations already executed must be undone and have no lasting effect.

Types of Failures: Failures are generally classified as transaction, system, and media failures. There are several possible reasons for a transaction to fail in the middle of execution:
· A computer failure (system crash). A hardware, software, or network error occurs in the computer system during transaction execution. Hardware crashes are usually media failures—for example, main memory failure.
· A transaction or system error. Some operation in the transaction may cause it to fail, such as integer overflow or division by zero. Transaction failure may also occur because of erroneous parameter values or because of a logical programming error.3 Additionally, the user may interrupt the transaction during its execution.
· Local errors or exception conditions detected by the transaction. During transaction execution, certain conditions may occur that necessitate cancellation of the transaction. For example, data for the transaction may not be found. An exception condition, such as insufficient account balance in a banking database, may cause a transaction, such as a fund withdrawal, to be canceled. 
· Concurrency control enforcement. The concurrency control method may abort a transaction because it violates serializability, or it may abort one or more transactions to resolve a state of deadlock among several transactions. 
· Disk failure. Some disk blocks may lose their data because of a read or write malfunction or because of a disk read/write head crash. This may happen during a read or a write operation of the transaction.
· Physical problems and catastrophes. This refers to an endless list of problems that includes power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes by mistake, and mounting of a wrong tape by the operator.

5.2 Transaction and System Concepts

5.2.1 Transaction States and Additional Operations
A transaction is an atomic unit of work that should either be completed in its entirety or not done at all. For recovery purposes, the system needs to keep track of when each transaction starts, terminates, and commits, or aborts. Therefore, the recovery manager of the DBMS needs to keep track of the following operations:
· BEGIN_TRANSACTION. This marks the beginning of transaction execution.
· READ or WRITE. These specify read or write operations on the database items that are executed as part of a transaction.
· END_TRANSACTION. This specifies that READ and WRITE transaction operations have ended and marks the end of transaction execution. However, at this point it may be necessary to check whether the changes introduced by the transaction can be permanently applied to the database (committed) or whether the transaction has to be aborted because it violates serializability or for some other reason.
· COMMIT_TRANSACTION. This signals a successful end of the transaction so that any changes (updates) executed by the transaction can be safely committed to the database and will not be undone.
· ROLLBACK (or ABORT). This signals that the transaction has ended unsuccessfully, so that any changes or effects that the transaction may have applied to the database must be undone.

Figure 5.4 shows a state transition diagram that illustrates how a transaction moves through its execution states. A transaction goes into an active state immediately after it starts execution, where it can execute its READ and WRITE operations. When the transaction ends, it moves to the partially committed state. At this point, some types of concurrency control protocols may do additional checks to see if the transaction can be committed or not. Also, some recovery protocols need to ensure that a system failure will not result in an inability to record the changes of the transaction permanently. If these checks are successful, the transaction is said to have reached its commit point and enters the committed state. However, a transaction can go to the failed state if one of the checks fails or if the transaction is aborted during its active state. The transaction may then have to be rolled back to undo the effect of its WRITE operations on the database. The terminated state corresponds to the transaction leaving the system. The transaction information that is maintained in system tables while the transaction has been running is removed when the transaction terminates. Failed or aborted transactions may be restarted later—either automatically or after being resubmitted by the user—as brand new transactions.

[image: ]
Figure 5.4: State transition diagram illustrating the states for transaction execution.

20.2.2 The System Log
To be able to recover from failures that affect transactions, the system maintains a log to keep track of all transaction operations that affect the values of database items, as well as other transaction information that may be needed to permit recovery from failures. The log is a sequential, append-only file that is kept on disk, so it is not affected by any type of failure except for disk or catastrophic failure. Typically, one (or more) main memory buffers, called the log buffers, hold the last part of the log file, so that log entries are first added to the log main memory buffer. When the log buffer is filled, or when certain other conditions occur, the log buffer is appended to the end of the log file on disk. In addition, the log file from disk is periodically backed up to archival storage (tape) to guard against catastrophic failures. The following are the types of entries—called log records—that are written to the log file and the corresponding action for each log record. In these entries, T refers to a unique transaction-id that is generated automatically by the system for each transaction and that is used to identify each transaction:
1. [start_transaction, T]. Indicates that transaction T has started execution.
2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has changed the value of database item X from old_value to new_value.
3. [read_item, T, X]. Indicates that transaction T has read the value of database item X.
4. [commit, T]. Indicates that transaction T has completed successfully, and affirms that its effect can be committed (recorded permanently) to the database.
5. [abort, T]. Indicates that transaction T has been aborted.

The log contains a record of every WRITE operation that changes the value of some database item, it is possible to undo the effect of these WRITE operations of a transaction T by tracing backward through the log and resetting all items changed by a WRITE operation of T to their old_values. Redo of an operation may also be necessary if a transaction has its updates recorded in the log but a failure occurs before the system can be sure that all these new_values have been written to the actual database on disk from the main memory buffers.

5.2.3 Commit Point of a Transaction
A transaction T reaches its commit point when all its operations that access the database have been executed successfully and the effect of all the transaction operations on the database have been recorded in the log. Beyond the commit point, the transaction is said to be committed, and its effect must be permanently recorded in the database. The transaction then writes a commit record [commit, T] into the log.

If a system failure occurs, we can search back in the log for all transactions T that have written a [start_transaction, T] record into the log but have not written their [commit, T] record yet; these transactions may have to be rolled back to undo their effect on the database during the recovery process. Transactions that have written their commit record in the log must also have recorded all their WRITE operations in the log, so their effect on the database can be redone from the log records.

5.2.4 DBMS-Specific Buffer Replacement Policies
The DBMS cache will hold the disk pages that contain information currently being processed in main memory buffers. If all the buffers in the DBMS cache are occupied and new disk pages are required to be loaded into main memory from disk, a page replacement policy is needed to select the particular buffers to be replaced.

Domain Separation (DS) Method. In a DBMS, various types of disk pages exist: index pages, data file pages, log file pages, and so on. In this method, the DBMS cache is divided into separate domains (sets of buffers). Each domain handles one type of disk pages, and page replacements within each domain are handled via the basic LRU (least recently used) page replacement. Although this achieves better performance on average that basic LRU, it is a static algorithm, and so does not adapt to dynamically changing loads because the number of available buffers for each domain is predetermined. 

Hot Set Method. This page replacement algorithm is useful in queries that have to scan a set of pages repeatedly, such as when a join operation is performed using the nested-loop method. If the inner loop file is loaded completely into main memory buffers without replacement (the hot set), the join will be performed efficiently because each page in the outer loop file will have to scan all the records in the inner loop file to find join matches. The hot set method determines for each database processing algorithm the set of disk pages that will be accessed repeatedly, and it does not replace them until their processing is completed.

The DBMIN Method. This page replacement policy uses a model known as QLSM (query locality set model), which predetermines the pattern of page references for each algorithm for a particular type of database operation.  Depending on the type of access method, the file characteristics, and the algorithm used, the QLSM will estimate the number of main memory buffers needed for each file involved in the operation. The DBMIN page replacement policy will calculate a locality set using QLSM for each file instance involved in the query.
.
20.3 Desirable Properties of Transactions
Transactions should possess several properties, often called the ACID properties; they should be enforced by the concurrency control and recovery methods of the DBMS. The following are the ACID properties:
· Atomicity. A transaction is an atomic unit of processing; it should either be performed in its entirety or not performed at all.
· Consistency preservation. A transaction should be consistency preserving, meaning that if it is completely executed from beginning to end without interference from other transactions, it should take the database from one consistent state to another.
· Isolation. A transaction should appear as though it is being executed in isolation from other transactions, even though many transactions are executing concurrently. That is, the execution of a transaction should not be interfered with by any other transactions executing concurrently.
· Durability or permanency. The changes applied to the database by a committed transaction must persist in the database. These changes must not be lost because of any failure.

The preservation of consistency is generally considered to be the responsibility of the programmers who write the database programs and of the DBMS module that enforces integrity constraints. Recall that a database state is a collection of all the stored data items (values) in the database at a given point in time. A consistent state of the database satisfies the constraints specified in the schema as well as any other constraints on the database that should hold. A database program should be written in a way that guarantees that, if the database is in a consistent state before executing the transaction, it will be in a consistent state after the complete execution of the transaction, assuming that no interference with other transactions occurs.

Levels of Isolation. There have been attempts to define the level of isolation of a transaction. A transaction is said to have level 0 (zero) isolation if it does not overwrite the dirty reads of higher-level transactions. Level 1 (one) isolation has no lost updates, and level 2 isolation has no lost updates and no dirty reads. Finally, level 3 isolation (also called true isolation) has, in addition to level 2 properties, repeatable reads. Another type of isolation is called snapshot isolation, and several practical concurrency control methods are based on this. 

5.4 Characterizing Schedules Based on Recoverability
When transactions are executing concurrently in an interleaved fashion, then the order of execution of operations from all the various transactions is known as a schedule (or history). 

5.4.1 Schedules (Histories) of Transactions
A schedule (or history) S of n transactions T1, T2, … , Tn is an ordering of the operations of the transactions. Operations from different transactions can be interleaved in the schedule S. However, for each transaction Ti that participates in the schedule S, the operations of Ti in S must appear in the same order in which they occur in Ti. The order of operations in S is considered to be a total ordering, meaning that for any two operations in the schedule, one must occur before the other. It is possible theoretically to deal with schedules whose operations form partial orders, but we will assume for now total ordering of the operations in a schedule.

For the purpose of recovery and concurrency control, we are mainly interested in the read_item and write_item operations of the transactions, as well as the commit and abort operations. A shorthand notation for describing a schedule uses the symbols b, r, w, e, c, and a for the operations begin_transaction, read_item, write_item, end_transaction, commit, and abort, respectively, and appends as a subscript the transaction id (transaction number) to each operation in the schedule. In this notation, the database item X that is read or written follows the r and w operations in parentheses. In some schedules, we will only show the read and write operations, whereas in other schedules we will show additional operations, such as commit or abort. The schedule in Figure 5.3(a), which we shall call Sa, can be written as follows in this notation:

Sa: r1(X); r2(X); w1(X); r1(Y); w2(X); w1(Y);
Similarly, the schedule for Figure 20.3(b), which we call Sb, can be written as follows, if we assume that transaction T1 aborted after its read_item(Y) operation:

Sb: r1(X); w1(X); r2(X); w2(X); r1(Y); a1;

Conflicting Operations in a Schedule. Two operations in a schedule are said to conflict if they satisfy all three of the following conditions: (1) they belong to different transactions; (2) they access the same item X; and (3) at least one of the operations is a write_item(X). For example, in schedule Sa, the operations r1(X) and w2(X) conflict, as do the operations r2(X) and w1(X), and the operations w1(X) and w2(X). However, the operations r1(X) and r2(X) do not conflict, since they are both read operations; the operations w2(X) and w1(Y) do not conflict because they operate on distinct data items X and Y; and the operations r1(X) and w1(X) do not conflict because they belong to the same transaction.

Intuitively, two operations are conflicting if changing their order can result in a different outcome. For example, if we change the order of the two operations r1(X); w2(X) to w2(X); r1(X), then the value of X that is read by transaction T1 changes, because in the second ordering the value of X is read by r1(X) after it is changed by w2(X), whereas in the first ordering the value is read before it is changed. This is called a read-write conflict. The other type is called a write-write conflict and is illustrated by the case where we change the order of two operations such as w1(X); w2(X) to w2(X); w1(X). For a write-write conflict, the last value of X will differ because in one case it is written by T2 and in the other case by T1. Notice that two read operations are not conflicting because changing their order makes no difference in outcome.

A schedule S of n transactions T1, T2, … , Tn is said to be a complete schedule if the following conditions hold:
1. The operations in S are exactly those operations in T1, T2, … , Tn, including a commit or abort operation as the last operation for each transaction in the schedule.
2. For any pair of operations from the same transaction Ti, their relative order of appearance in S is the same as their order of appearance in Ti.
3. For any two conflicting operations, one of the two must occur before the other in the schedule.

5.4.2 Characterizing Schedules Based on Recoverability
The transaction T is committed, it should never be necessary to roll back T. This ensures that the durability property of transactions is not violated.The schedules that theoretically meet this criterion are called recoverable schedules. A schedule where a committed transaction may have to be rolled back during recovery is called nonrecoverable and hence should not be permitted by the DBMS. The condition for a recoverable schedule is as follows: A schedule S is recoverable if no transaction T in S commits until all transactions T′ that have written some item X that T reads have committed.

A transaction T reads from transaction T′in a schedule S if some item X is first written by T′ and later read by T. In addition, T′should not have been aborted before T reads item X, and there should be no transactions that write X after T′ writes it and before T reads it (unless those transactions, if any, have aborted before T reads X).

Consider the schedule Sa′ given below, which is the same as schedule Sa except that two commit operations have been added to Sa:

Sa′: r1(X); r2(X); w1(X); r1(Y); w2(X); c2; w1(Y); c1;

Sa′is recoverable, even though it suffers from the lost update problem; this problem is handled by serializability theory. However, consider the two (partial) schedules Sc and Sd that follow:
Sc: r1(X); w1(X); r2(X); r1(Y); w2(X); c2; a1;
Sd: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); c1; c2;
Se: r1(X); w1(X); r2(X); r1(Y); w2(X); w1(Y); a1; a2;

Sc is not recoverable because T2 reads item X from T1, but T2 commits before T1 commits. The problem occurs if T1 aborts after the c2 operation in Sc; then the value of X that T2 read is no longer valid and T2 must be aborted after it is committed, leading to a schedule that is not recoverable. For the schedule to be recoverable, the c2 operation in Sc must be postponed until after T1 commits, as shown in Sd. If T1 aborts instead of committing, then T2 should also abort as shown in Se, because the value of X it read is no longer valid. In Se, aborting T2 is acceptable since it has not committed yet, which is not the case for the nonrecoverable schedule Sc.

In a recoverable schedule, no committed transaction ever needs to be rolled back, and so the definition of a committed transaction as durable is not violated. However, it is possible for a phenomenon known as cascading rollback (or cascading abort) to occur in some recoverable schedules, where an uncommitted transaction has to be rolled back because it read an item from a transaction that failed. This is illustrated in schedule Se, where transaction T2 has to be rolled back because it read item X from T1, and T1 then aborted.

Finally, there is a third, more restrictive type of schedule, called a strict schedule, in which transactions can neither read nor write an item X until the last transaction that wrote X has committed (or aborted). Strict schedules simplify the recovery process. In a strict schedule, the process of undoing a write_item(X) operation of an aborted transaction is simply to restore the before image (old_value or BFIM) of data item X. This simple procedure always works correctly for strict schedules, but it may not work for recoverable or cascadeless schedules. For example, consider schedule Sf :

Sf : w1(X, 5); w2(X, 8); a1;

Suppose that the value of X was originally 9, which is the before image stored in the system log along with the w1(X, 5) operation. If T1 aborts, as in Sf, the recovery procedure that restores the before image of an aborted write operation will restore the value of X to 9, even though it has already been changed to 8 by transaction T2, thus leading to potentially incorrect results. Although schedule Sf is cascadeless, it is not a strict schedule, since it permits T2 to write item X even though the transaction T1 that last wrote X had not yet committed (or aborted). A strict schedule does not have this problem.

5.5 Characterizing Schedules Based on Serializability
The types of schedules that are always considered to be correct when concurrent transactions are executing. Such schedules are known as serializable schedules. Suppose that two users—for example, two airline reservations agents—submit to the DBMS transactions T1 and T2 in Figure 5.2 at approximately the same time. If no interleaving of operations is permitted, there are only
two possible outcomes:
1. Execute all the operations of transaction T1 (in sequence) followed by all the operations of transaction T2 (in sequence).
2. Execute all the operations of transaction T2 (in sequence) followed by all the operations of transaction T1 (in sequence).


[image: ]

Figure 20.5: Examples of serial and nonserial schedules involving transactions T1 and T2. 
(a) Serial schedule A: T1 followed by T2. 
(b) Serial schedule B: T2 followed by T1. 
                                         (c) Two nonserial schedules C and D with interleaving of operations.

5.5.1 Serial, Nonserial, and Conflict-Serializable Schedules
Schedules A and B in Figures 5.5(a) and (b) are called serial because the operations of each transaction are executed consecutively, without any interleaved operations from the other transaction. In a serial schedule, entire transactions are performed in serial order: T1 and then T2 in Figure 5.5(a), and T2 and then T1 in Figure5.5 (b).

Schedules C and D in Figure 5.5(c) are called nonserial because each sequence interleaves operations from the two transactions.

The definition of serializable schedule is as follows: A schedule S of n transactions is serializable if it is equivalent to some serial schedule of the same n transactions.

Conflict Equivalence of Two Schedules. Two schedules are said to be conflict equivalent if the relative order of any two conflicting operations is the same in both schedules. The two operations in a schedule are said to conflict if they belong to different transactions, access the same database item, and either both are write_item operations or one is a write_item and the other a read_item.

If two conflicting operations are applied in different orders in two schedules, the effect can be different on the database or on the transactions in the schedule, and hence the schedules are not conflict equivalent. 

Serializable Schedules. Using the notion of conflict equivalence, we define a schedule S to be serializable12 if it is (conflict) equivalent to some serial schedule S′. Schedule C in Figure 5.5(c) is not equivalent to either of the two possible serial schedules A and B, and hence is not serializable. Trying to reorder the operations of schedule C to find an equivalent serial schedule fails because r2(X) and w1(X) conflict, which means that we cannot move r2(X) down to get the equivalent serial schedule T1, T2. Similarly, because w1(X) and w2(X) conflict, we cannot move w1(X) down to get the equivalent serial schedule T2, T1.
[image: ]
Figure 5.6: Two schedules that are result equivalent for the initial value of X = 100 but are not result
equivalent in general.

5.5.2 Testing for Serializability of a Schedule
Algorithm 5.1 can be used to test a schedule for conflict serializability. The algorithm looks at only the read_item and write_item operations in a schedule to construct a precedence graph (or serialization graph), which is a directed graph G = (N, E) that consists of a set of nodes N = {T1, T2, … , Tn } and a set of directed edges E = {e1, e2, … , em }. There is one node in the graph for each transaction Ti in the schedule. Each edge ei in the graph is of the form (Tj →Tk ), 1 ≤ j ≤ n, 1 ≤ k ≤ n, where Tj is the starting node of ei and Tk is the ending node of ei. Such an edge from node Tj to node Tk is created by the algorithm if a pair of conflicting operations exist in Tj and Tk and the conflicting operation in Tj appears in the schedule before the conflicting operation in Tk.


Algorithm 5.1. Testing Conflict Serializability of a Schedule S
1. For each transaction Ti participating in schedule S, create a node labeled Ti in the precedence graph.
2. For each case in S where Tj executes a read_item(X) after Ti executes a write_item(X), create an edge (Ti →Tj) in the precedence graph.
3. For each case in S where Tj executes a write_item(X) after Ti executes a read_item(X), create an edge (Ti →Tj) in the precedence graph.
4. For each case in S where Tj executes a write_item(X) after Ti executes a write_item(X), create an edge (Ti →Tj) in the precedence graph.
5. The schedule S is serializable if and only if the precedence graph has no cycles.

The precedence graph is constructed as described in Algorithm 5.1. If there is a cycle in the precedence graph, schedule S is not (conflict) serializable; if there is no cycle, S is serializable. A cycle in a directed graph is a sequence of edges C = ((Tj →Tk), (Tk →Tp), … , (Ti →Tj)) with the property that the starting node of each edge— except the first edge—is the same as the ending node of the previous edge, and the starting node of the first edge is the same as the ending node of the last edge (the sequence starts and ends at the same node).

Figure 5.7 shows such labels on the edges. When checking for a cycle, the labels are not relevant. In general, several serial schedules can be equivalent to S if the precedence graph for
S has no cycle. However, if the precedence graph has a cycle, it is easy to show that we cannot create any equivalent serial schedule, so S is not serializable. The precedence graphs created for schedules A to D, respectively, in Figure 5.5 appear in Figures 5.7(a) to (d). The graph for schedule C has a cycle, so it is not serializable.

Another example, in which three transactions participate, is shown in Figure 5.8. Figure 20.8(a) shows the read_item and write_item operations in each transaction. Two schedules E and F for these transactions are shown in Figures 5.8(b) and (c), respectively, and the precedence graphs for schedules E and F are shown in Figures 5.8(d) and (e). Schedule E is not serializable because the corresponding precedence graph has cycles. Schedule F is serializable, and the serial schedule equivalent to F is shown in Figure 5.8(e). Although only one equivalent serial schedule exists for F, in general there may be more than one equivalent serial schedule for a serializable schedule. Figure 5.8(f) shows a precedence graph representing a schedule
[image: ]

Figure 5.7: Constructing the precedence graphs for schedules A to D from Figure 5.5 to test for conflict serializability.
(a) Precedence graph for serial schedule A. 
(b) Precedence graph for serial schedule B. 
   	(c) Precedence graph for schedule C (not serializable). 
   	(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

[image: ]

Figure 5.8: Another example of serializability testing. (a) The read and write operations of three
transactions T1, T2, and T3. (b) Schedule E. (c) Schedule F.


[image: ]
Figure 5.8 (continued): Another example of serializability testing. (d) Precedence graph for schedule E. (e) Precedence graph for schedule F. (f) Precedence graph with two equivalent serial schedules.

5.5.3 How Serializability Is Used for Concurrency Control
A serial schedule represents inefficient processing because no interleaving of operations from different transactions is permitted. This can lead to low CPU utilization while a transaction waits for disk I/O, or for a long transaction to delay other transactions, thus slowing down transaction processing considerably. A serializable schedule gives the benefits of concurrent execution without giving up any correctness. In practice, it is difficult to test for the serializability of a schedule. The interleaving of operations from concurrent transactions—which are usually executed as processes by the operating system—is typically determined by the operating system scheduler, which allocates resources to all processes. 

5.5.4 View Equivalence and View Serializability
The less restrictive definition of equivalence of schedules is called view equivalence. This leads to another definition of serializability called view serializability. Two schedules S and S′ are said to be view equivalent if the following three conditions hold:
1. The same set of transactions participates in S and S′, and S and S′ include the same operations of those transactions.
2. For any operation ri(X) of Ti in S, if the value of X read by the operation has been written by an operation wj(X) of Tj (or if it is the original value of X before the schedule started), the same condition must hold for the value of X read by operation ri(X) of Ti in S′.
3. If the operation wk(Y) of Tk is the last operation to write item Y in S, then wk(Y) of Tk must also be the last operation to write item Y in S′.

A schedule S is said to be view serializable if it is view equivalent to a serial schedule. The definitions of conflict serializability and view serializability are similar if a condition known as the constrained write assumption (or no blind writes) holds on all transactions in the schedule. A blind write is a write operation in a transaction T on an item X that is not dependent on the old value of X, so it is not preceded by a read of X in the transaction T.
The definition of view serializability is less restrictive than that of conflict serializability under the unconstrained write assumption, where the value written by an operation wi(X) in Ti can be independent of its old value. This is possible when blind writes are allowed, and it is illustrated by the following schedule Sg of three transactions T1: r1(X); w1(X); T2: w2(X); and T3: w3(X):

Sg: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

5.5.5 Other Types of Equivalence of Schedules
Serializability of schedules is sometimes considered to be too restrictive as a condition for ensuring the correctness of concurrent executions. Some applications can produce schedules that are correct by satisfying conditions less stringent than either conflict serializability or view serializability. 

An example is the type of transactions known as debit-credit transactions—for example, those that apply deposits and withdrawals to a data item whose value is the current balance of a bank account. The semantics of debit-credit operations is that they update the value of a data item X by either subtracting from or adding to the value of the data item. Because addition and subtraction operations are commutative— that is, they can be applied in any order—it is possible to produce correct schedules that are not serializable. For example, consider the following transactions, each of which may be used to transfer an amount of money between two bank accounts:

T1: r1(X); X :{equal} X − 10; w1(X); r1(Y); Y :{equal} Y + 10; w1(Y);
T2: r2(Y); Y :{equal} Y − 20; w2(Y); r2(X); X :{equal} X + 20; w2(X);

Consider the following nonserializable schedule Sh for the two transactions:

Sh: r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

5.6 Transaction Support in SQL
With SQL, there is no explicit Begin_Transaction statement. Transaction initiation is done implicitly when particular SQL statements are encountered. However, every transaction must have an explicit end statement, which is either a COMMIT or a ROLLBACK. Every transaction has certain characteristics attributed to it. These characteristics are specified by a SET TRANSACTION statement in SQL. The characteristics are the access mode, the diagnostic area size, and the isolation level.

The access mode can be specified as READ ONLY or READ WRITE. The default is READ WRITE, unless the isolation level of READ UNCOMMITTED is specified, in which case READ ONLY is assumed. A mode of READ WRITE allows select, update, insert, delete, and create commands to be executed. A mode of READ ONLY, as the name implies, is simply for data retrieval.

The diagnostic area size option, DIAGNOSTIC SIZE n, specifies an integer value n, which indicates the number of conditions that can be held simultaneously in the diagnostic area. These conditions supply feedback information (errors or exceptions) to the user or program on the n most recently executed SQL statement.

The isolation level option is specified using the statement ISOLATION LEVEL <isolation>, where the value for <isolation> can be READ UNCOMMITTED, READ COMMITTED, REPEATABLE READ, or SERIALIZABLE.15 The default isolation level is SERIALIZABLE, although some systems use READ COMMITTED as their default. 
If a transaction executes at a lower isolation level than SERIALIZABLE, then one or more of the following three violations may occur:
1. Dirty read. A transaction T1 may read the update of a transaction T2, which has not yet committed. If T2 fails and is aborted, then T1 would have read a value that does not exist and is incorrect.
2. Nonrepeatable read. A transaction T1 may read a given value from a table. If another transaction T2 later updates that value and T1 reads that value again, T1 will see a different value.
3. Phantoms. A transaction T1 may read a set of rows from a table, perhaps based on some condition specified in the SQL WHERE-clause. Now suppose that a transaction T2 inserts a new row r that also satisfies the WHERE-clause condition used in T1, into the table used by T1. The record r is called a phantom record because it was not there when T1 starts but is there when T1 ends. T1 may or may not see the phantom, a row that previously did not exist. If the equivalent serial order is T1 followed by T2, then the record r should not be seen; but if it is T2 followed by T1, then the phantom record should be in the result given to T1. If the system cannot ensure the correct behavior, then it does not deal with the phantom record problem.

[image: ]
Table 5.1 Possible Violations Based on Isolation Levels as Defined in SQL
Table 5.1 summarizes the possible violations for the different isolation levels. An entry of Yes indicates that a violation is possible and an entry of No indicates that it is not possible. READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is the most restrictive in that it avoids all three of the problems mentioned above.

A sample SQL transaction might look like the following:
EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION
READ WRITE
DIAGNOSTIC SIZE 5
ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)
VALUES ('Robert', 'Smith', '991004321', 2, 35000);
EXEC SQL UPDATE EMPLOYEE
SET Salary = Salary * 1.1 WHERE Dno = 2;
EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ... ;

The above transaction consists of first inserting a new row in the EMPLOYEE table and then updating the salary of all employees who work in department 2. If an error occurs on any of the SQL statements, the entire transaction is rolled back. This implies that any updated salary (by this transaction) would be restored to its previous value and that the newly inserted row would be removed.

The basic definition of snapshot isolation is that a transaction sees the data items that it reads based on the committed values of the items in the database snapshot (or database state) when the transaction starts. Snapshot isolation will ensure that the phantom record problem does not occur, since the database transaction, or in some cases the database statement, will only see the records that were committed in the database at the time the transaction starts. Any insertions, deletions, or updates that occur after the transaction starts will not be seen by the transaction. 

Concurrency Control in Databases

Two-phase locking techniques for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. 

5.7 Two-Phase Locking Techniques for Concurrency Control
Some of the main techniques used to control concurrent execution of transactions are based on the concept of locking data items. A lock is a variable associated with a data item that describes the status of the item with respect to possible operations that can be applied to it. 

5.7.1 Types of Locks and System Lock Tables
Several types of locks are used in concurrency control. To introduce locking concepts gradually, first we discuss binary locks, which are simple but are also too restrictive for database concurrency control purposes and so are not used much.

Binary Locks. A binary lock can have two states or values: locked and unlocked (or 1 and 0, for simplicity). A distinct lock is associated with each database item X. If the value of the lock on X is 1, item X cannot be accessed by a database operation that requests the item. If the value of the lock on X is 0, the item can be accessed when requested, and the lock value is changed to 1. We refer to the current value (or state) of the lock associated with item X as lock(X).

Two operations, lock_item and unlock_item, are used with binary locking. A transaction requests access to an item X by first issuing a lock_item(X) operation. If LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the transaction locks the item) and the transaction is allowed to access item X. When the transaction is through using the item, it issues an unlock_item(X) operation, which sets LOCK(X) back to 0 (unlocks the item) so that X may be accessed by other transactions. Hence, a binary lock enforces mutual exclusion on the data item. A description of the lock_item(X) and unlock_item(X) operations is shown in Figure 5.9.

Notice that the lock_item and unlock_item operations must be implemented as indivisible units (known as critical sections in operating systems); that is, no interleaving should be allowed once a lock or unlock operation is started until the operation terminates or the transaction waits. In Figure 5.9, the wait command within the lock_item(X) operation is usually implemented by putting the transaction in a waiting queue for item X until X is unlocked and the transaction can be granted access to it. Other transactions that also want to access X are placed in the same queue.

Hence, the wait command is considered to be outside the lock_item operation. It is simple to implement a binary lock; all that is needed is a binary-valued variable, LOCK, associated with each data item X in the database. In its simplest form, each lock can be a record with three fields: <Data_item_name, LOCK, Locking_transaction> plus a queue for transactions that are waiting to access the item. The system needs to maintain only these records for the items that are currently locked in a lock table, which could be organized as a hash file on the item name. Items not in the lock table are considered to be unlocked. The DBMS has a lock manager subsystem to keep track of and control access to locks.

The simple binary locking scheme described here is used; every transaction must obey the following rules:
1. A transaction T must issue the operation lock_item(X) before any read_item(X) or write_item(X) operations are performed in T.
2. A transaction T must issue the operation unlock_item(X) after all read_item(X) and write_item(X) operations are completed in T.
3. A transaction T will not issue a lock_item(X) operation if it already holds the lock on item X.
4. A transaction T will not issue an unlock_item(X) operation unless it already holds the lock on item X.

These rules can be enforced by the lock manager module of the DBMS. Between the lock_item(X) and unlock_item(X) operations in transaction T, T is said to hold the lock on item X. At most one transaction can hold the lock on a particular item. Thus no two transactions can access the same item concurrently.

[image: ]
Figure 5.9: Lock and unlock operations for binary locks.

Shared/Exclusive (or Read/Write) Locks. The preceding binary locking scheme is too restrictive for database items because at most one transaction can hold a lock on a given item. We should allow several transactions to access the same item X if they all access X for reading purposes only. This is because read operations on the same item by different transactions are not conflicting. However, if a transaction is to write an item X, it must have exclusive access to X. For this purpose, a different type of lock, called a multiple-mode lock, is used. In this scheme—called shared/exclusive or read/write locks—there are three locking operations: read_lock(X), write_lock(X), and unlock(X). A lock associated with an item X, LOCK(X), now has three possible states: read-locked, write-locked, or unlocked. A read-locked item is also called share-locked because other transactions are allowed to read the item, whereas a write-locked item is called exclusive-locked because a single transaction exclusively holds the lock on the item.


The three operations read_lock(X), write_lock(X), and unlock(X) are described in Figure 21.2.2 As before, each of the three locking operations should be considered indivisible; no interleaving should be allowed once one of the operations is started until either the operation terminates by granting the lock or the transaction is placed in a waiting queue for the item.
[image: ]
Figure 5.10: Locking and unlocking operations for two modes 
(Read/write, or shared/exclusive) locks.

The shared/exclusive locking scheme, the system must enforce the following rules:
1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any read_item(X) operation is performed in T.
2. A transaction T must issue the operation write_lock(X) before any write_item(X) operation is performed in T.
3. A transaction T must issue the operation unlock(X) after all read_item(X) and write_item(X) operations are completed in T.
4. A transaction T will not issue a read_lock(X) operation if it already holds a read (shared) lock or a write (exclusive) lock on item X. This rule may be relaxed for downgrading of locks, as we discuss shortly.
5. A transaction T will not issue a write_lock(X) operation if it already holds a read (shared) lock or write (exclusive) lock on item X. This rule may also be relaxed for upgrading of locks, as we discuss shortly.
6. A transaction T will not issue an unlock(X) operation unless it already holds a read (shared) lock or a write (exclusive) lock on item X.

Conversion (Upgrading, Downgrading) of Locks. It is desirable to relax conditions 4 and 5 in the preceding list in order to allow lock conversion; that is, a transaction that already holds a lock on item X is allowed under certain conditions to convert the lock from one locked state to another. 

For example, it is possible for a transaction T to issue a read_lock(X) and then later to upgrade the lock by issuing a write_lock(X) operation. If T is the only transaction holding a read lock on X at the time it issues the write_lock(X) operation, the lock can be upgraded; otherwise, the transaction must wait. It is also possible for a transaction T to issue a write_lock(X) and then later to downgrade the lock by issuing a read_lock(X) operation. When upgrading and downgrading of locks is used, the lock table must include transaction identifiers in the record structure for each lock (in the locking_transaction(s) field) to store the information on which transactions hold locks on the item. The descriptions of the read_lock(X) and write_lock(X) operations in Figure 5.10 must be changed appropriately to allow for lock upgrading and downgrading. We leave this
as an exercise for the reader.

Using binary locks or read/write locks in transactions, as described earlier, does not guarantee serializability of schedules on its own. Figure 5.11 shows an example where the preceding locking rules are followed but a nonserializable schedule may result. This is because in Figure 5.11(a) the items Y in T1 and X in T2 were unlocked too early. This allows a schedule such as the one shown in Figure 5.11(c) to occur, which is not a serializable schedule and hence gives incorrect results. To guarantee serializability, we must follow an additional protocol concerning the positioning of locking and unlocking operations in every transaction. The best-known protocol, two-phase locking, is described in the next section.

5.7.2 Guaranteeing Serializability by Two-Phase Locking
A transaction is said to follow the two-phase locking protocol if all locking operations (read_lock, write_lock) precede the first unlock operation in the transaction. Such a transaction can be divided into two phases: an expanding or growing (first) phase, during which new locks on items can be acquired but none can be released; and a shrinking (second) phase, during which existing locks can be released but no new locks can be acquired. If lock conversion is allowed, then upgrading of locks (from read-locked to write-locked) must be done during the expanding phase, and downgrading of locks (from write-locked to read-locked) must be done in the shrinking phase.

Transactions T1 and T2 in Figure 5.11(a) do not follow the two-phase locking protocol because the write_lock(X) operation follows the unlock(Y) operation in T1, and similarly the write_lock(Y) operation follows the unlock(X) operation in T2. If we enforce two-phase locking, the transactions can be rewritten as T1′ and T2′, as shown in Figure 5.12. Now, the schedule shown in Figure 5.11(c) is not permitted for T1′ and T2′ under the rules of locking because T1′ will issue its write_lock(X) before it unlocks item Y; consequently, when T2′ issues its read_lock(X), it is forced to wait until T1′ releases the lock by issuing an unlock (X) in the schedule.
[image: ]
Figure 5.11: Transactions that do not obey two-phase locking.
(a) Two transactions T1 and T2. 
(b) Results of possible serial schedules of T1 and T2. 
(c) A nonserializable schedule S that uses locks.

Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are a number of variations of two-phase locking (2PL). The technique just described is known as basic 2PL. A variation known as conservative 2PL (or static 2PL) requires a transaction to lock all the items it accesses before the transaction begins execution, by predeclaring its read-set and write-set. The read-set of a transaction is the set of all items that the transaction reads, and the write-set is the set of all items that it writes. If any of the predeclared items needed cannot be locked, the transaction does not lock any item; instead, it waits until all the items are available for locking. 

The difference between strict and rigorous 2PL: the former holds write-locks until it commits, whereas the latter holds all locks (read and write). Also, the difference between conservative and rigorous 2PL is that the former must lock all its items before it starts, so once the transaction starts it is in its shrinking phase; the latter does not unlock any of its items until after it terminates (by committing or aborting), so the transaction is in its expanding phase until it ends. Usually the concurrency control subsystem itself is responsible for generating the read_lock and write_lock requests. 
5.7.3 Dealing with Deadlock and Starvation
Deadlock occurs when each transaction T in a set of two or more transactions is waiting for some item that is locked by some other transaction T′ in the set. Hence, each transaction in the set is in a waiting queue, waiting for one of the other transactions in the set to release the lock on an item. But because the other transaction is also waiting, it will never release the lock. A simple example is shown in Figure 5.13(a), where the two transactions T1′ and T2′ are deadlocked in a partial schedule; T1′ is in the waiting queue for X, which is locked by T2′, whereas T2′ is in the waiting queue for Y, which is locked by T1′. Meanwhile, neither T1′ nor T2′ nor any other transaction can access items X and Y.

[image: ]
Figure 5.12: Transactions T1′ and T2′, which are the same as T1 and T2 in Figure 21.3 but follow the two-phase locking protocol. Note that they can produce a deadlock.
[image: ]

Figure 5.13: Illustrating the deadlock problem. (a) A partial schedule of T1′ and T2′ that is
in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

Deadlock Prevention Protocols. One way to prevent deadlock is to use a deadlock prevention protocol One deadlock prevention protocol, which is used in conservative two-phase locking, requires that every transaction lock all the items it needs in advance (which is generally not a practical assumption)—if any of the items cannot be obtained, none of the items are locked. Rather, the transaction waits and then tries again to lock all the items it needs. Obviously, this solution further limits concurrency.

A second protocol, which also limits concurrency, involves ordering all the items in the database and making sure that a transaction that needs several items will lock them according to that order. This requires that the programmer (or the system) is aware of the chosen order of the items, which is also not practical in the database context.

The timestamps are typically based on the order in which transactions are started; hence, if transaction T1 starts before transaction T2, then TS(T1) < TS(T2). Notice that the older transaction (which starts first) has the smaller timestamp value.

Two schemes that prevent deadlock are called wait-die and wound-wait. Suppose that transaction Ti tries to lock an item X but is not able to because X is locked by some other transaction Tj with a conflicting lock. The rules followed by these schemes are:
· Wait-die. If TS(Ti) < TS(Tj), then (Ti older than Tj) Ti is allowed to wait; otherwise (Ti younger than Tj) abort Ti (Ti dies) and restart it later with the same timestamp.
· Wound-wait. If TS(Ti) < TS(Tj), then (Ti older than Tj) abort Tj (Ti wounds Tj) and restart it later with the same timestamp; otherwise (Ti younger than Tj) Ti is allowed to wait.
Another group of protocols that prevent deadlock do not require timestamps. These include the no waiting (NW) and cautious waiting (CW) algorithms. In the no waiting algorithm, if a transaction is unable to obtain a lock, it is immediately aborted and then restarted after a certain time delay without checking whether a deadlock will actually occur or not. In this case, no transaction ever waits, so no deadlock will occur. However, this scheme can cause transactions to abort and restart needlessly.  The cautious waiting algorithm was proposed to try to reduce the number of needless aborts/restarts. Suppose that transaction Ti tries to lock an item X but is not able to do so because X is locked by some other transaction Tj with a conflicting lock. The cautious waiting rule is as follows:

· Cautious waiting. If Tj is not blocked (not waiting for some other locked item), then Ti is blocked and allowed to wait; otherwise abort Ti. It can be shown that cautious waiting is deadlock-free, because no transaction will ever wait for another blocked transaction. By considering the time b(T) at which each blocked transaction T was blocked, if the two transactions Ti and Tj above both become blocked and Ti is waiting for Tj, then b(Ti) < b(Tj), since Ti can only wait for Tj at a time when Tj is not blocked itself. Hence, the blocking times form a total ordering on all blocked transactions, so no cycle that causes deadlock can occur.

Deadlock Detection. An alternative approach to dealing with deadlock is deadlock detection, where the system checks if a state of deadlock actually exists. This solution is attractive if we know there will be little interference among the transactions—that is, if different transactions will rarely access the same items at the same time. 

A simple way to detect a state of deadlock is for the system to construct and maintain a wait-for graph. One node is created in the wait-for graph for each transaction that is currently executing. Whenever a transaction Ti is waiting to lock an item X that is currently locked by a transaction Tj, a directed edge (Ti → Tj) is created in the wait-for graph. When Tj releases the lock(s) on the items that Ti was waiting for, the directed edge is dropped from the wait-for graph. We have a state of deadlock if and only if the wait-for graph has a cycle. One problem with this approach is the matter of determining when the system should check for a deadlock.

One possibility is to check for a cycle every time an edge is added to the waitfor graph, but this may cause excessive overhead. Criteria such as the number of currently executing transactions or the period of time several transactions have been waiting to lock items may be used instead to check for a cycle. Figure 5.13(b) shows the wait-for graph for the (partial) schedule shown in Figure 5.13(a).

If the system is in a state of deadlock, some of the transactions causing the deadlock must be aborted. Choosing which transactions to abort is known as victim selection. The algorithm for victim selection should generally avoid selecting transactions that have been running for a long time and that have performed many updates, and it should try instead to select transactions that have not made many changes (younger transactions).
Timeouts. Another simple scheme to deal with deadlock is the use of timeouts. This method is practical because of its low overhead and simplicity. In this method, if a transaction waits for a period longer than a system-defined timeout period, the system assumes that the transaction may be deadlocked and aborts it—regardless of whether a deadlock actually exists.

Starvation. Another problem that may occur when we use locking is starvation, which occurs when a transaction cannot proceed for an indefinite period of time while other transactions in the system continue normally. This may occur if the waiting scheme for locked items is unfair in that it gives priority to some transactions over others. 

One solution for starvation is to have a fair waiting scheme, such as using a first-come-first-served queue; transactions are enabled to lock an item in the order in which they originally requested the lock. Another scheme allows some transactions to have priority over others but increases the priority of a transaction the longer it waits, until it eventually gets the highest priority and proceeds.

Starvation can also occur because of victim selection if the algorithm selects the same transaction as victim repeatedly, thus causing it to abort and never finish execution.

5.8 Concurrency Control Based on Timestamp Ordering
The use of locking, combined with the 2PL protocol, guarantees serializability of schedules. The serializable schedules produced by 2PL have their equivalent serial schedules based on the order in which executing transactions lock the items they acquire. If a transaction needs an item that is already locked, it may be forced to wait until the item is released. Some transactions may be aborted and restarted because of the deadlock problem. A different approach to concurrency control involves using transaction timestamps to order transaction execution for an equivalent serial schedule. 

5.8.1 Timestamps
Timestamp is a unique identifier created by the DBMS to identify a transaction. Typically, timestamp values are assigned in the order in which the transactions are submitted to the system, so a timestamp can be thought of as the transaction start time. We will refer to the timestamp of transaction T as TS(T). Concurrency control techniques based on timestamp ordering do not use locks; hence, deadlocks cannot occur.

Timestamps can be generated in several ways. One possibility is to use a counter that is incremented each time its value is assigned to a transaction. The transaction timestamps are numbered 1, 2, 3, … in this scheme. A computer counter has a finite maximum value, so the system must periodically reset the counter to zero when no transactions are executing for some short period of time. Another way to implement timestamps is to use the current date/time value of the system clock and ensure that no two timestamp values are generated during the same tick of the clock.

5.8.2 The Timestamp Ordering Algorithm for Concurrency Control
A schedule in which the transactions participate is then serializable, and the only equivalent serial schedule permitted has the transactions in order of their timestamp values. This is called timestamp ordering (TO). 

In timestamp ordering, however, the schedule is equivalent to the particular serial order corresponding to the order of the transaction timestamps. The algorithm allows interleaving of transaction operations, but it must ensure that for each pair of conflicting operations in the schedule, the order in which the item is accessed must follow the timestamp order. To do this, the algorithm associates with each database item X two timestamp (TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp among all the timestamps of transactions that have successfully read item X—that is, read_TS(X) = TS(T), where T is the youngest transaction that has read X successfully.
2. write_TS(X). The write timestamp of item X is the largest of all the timestamps of transactions that have successfully written item X—that is, write_TS(X) = TS(T), where T is the youngest transaction that has written X successfully. Based on the algorithm, T will also be the last transaction to write item X, as we shall see.

Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a read_item(X) or a write_item(X) operation, the basic TO algorithm compares the timestamp of T with read_TS(X) and write_TS(X) to ensure that the timestamp order of transaction execution is not violated. If this order is violated, then transaction T is aborted and resubmitted to the system as a new transaction with a new timestamp.

If T is aborted and rolled back, any transaction T1 that may have used a value written by T must also be rolled back. Similarly, any transaction T2 that may have used a value written by T1 must also be rolled back, and so on. This effect is known as cascading rollback and is one of the problems associated with basic TO, since the schedules produced are not guaranteed to be recoverable. 

The concurrency control algorithm must check whether conflicting operations violate the timestamp ordering in the following two cases:
1. Whenever a transaction T issues a write_item(X) operation, the following check is performed:
a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and reject the operation. This should be done because some younger transaction with a timestamp greater than TS(T)—and hence after T in the timestamp ordering—has already read or written the value of item X before T had a chance to write X, thus violating the timestamp ordering.
b. If the condition in part (a) does not occur, then execute the write_item(X) operation of T and set write_TS(X) to TS(T).
2. Whenever a transaction T issues a read_item(X) operation, the following check is performed:
a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This should be done because some younger transaction with timestamp greater than TS(T)—and hence after T in the timestamp ordering—has already written the value of item X before T had a chance to read X.
b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and set read_TS(X) to the larger of TS(T) and the current read_TS(X).

Strict Timestamp Ordering (TO). A variation of basic TO called strict TO ensures that the schedules are both strict (for easy recoverability) and (conflict) serializable. In this variation, a transaction T issues a read_item(X) or write_item(X) such that TS(T) > write_TS(X) has its read or write operation delayed until the transaction T′ that wrote the value of X (hence TS(T′) = write_TS(X)) has committed or aborted

To implement this algorithm, it is necessary to simulate the locking of an item X that has been written by transaction T′ until T′ is either committed or aborted. This algorithm does not cause deadlock, since T waits for T′ only if TS(T) > TS(T′). Thomas’s Write Rule. A modification of the basic TO algorithm, known as Thomas’s write rule, does not enforce conflict serializability, but it rejects fewer write operations by modifying the checks for the write_item(X) operation as follows:
1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.
2. If write_TS(X) > TS(T), then do not execute the write operation but continue processing.
3. If neither the condition in part (1) nor the condition in part (2) occurs, then execute the write_item(X) operation of T and set write_TS(X) to TS(T).

5.9 Multiversion Concurrency Control Techniques
These protocols for concurrency control keep copies of the old values of a data item when the item is updated (written); they are known as multiversion concurrency control because several versions (values) of an item are kept by the system. When a transaction requests to read an item, the appropriate version is chosen to maintain the serializability of the currently executing schedule. One reason for keeping multiple versions is that some read operations that would be rejected in other techniques can still be accepted by reading an older version of the item to maintain serializability. 

When a transaction writes an item, it writes a new version and the old version(s) of the item is retained. Some multiversion concurrency control algorithms use the concept of view serializability rather than conflict serializability.

An obvious drawback of multiversion techniques is that more storage is needed to maintain multiple versions of the database items. In some cases, older versions can be kept in a temporary store. It is also possible that older versions may have to be maintained anyway—for example, for recovery purposes. 

5.9.1 Multiversion Technique Based on Timestamp Ordering
In this method, several versions X1, X2, … , Xk of each data item X are maintained. For each version, the value of version Xi and the following two timestamps associated with version Xi are kept:
1. read_TS(Xi). The read timestamp of Xi is the largest of all the timestamps of transactions that have successfully read version Xi.
2. write_TS(Xi). The write timestamp of Xi is the timestamp of the transaction that wrote the value of version Xi.

Whenever a transaction T is allowed to execute a write_item(X) operation, a new version Xk+1 of item X is created, with both the write_TS(Xk+1) and the read_TS(Xk+1) set to TS(T). Correspondingly, when a transaction T is allowed to read the value of version Xi, the value of read_TS(Xi) is set to the larger of the current read_TS(Xi) and TS(T).

To ensure serializability, the following rules are used:
1. If transaction T issues a write_item(X) operation, and version i of X has the highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T), and read_TS(Xi) > TS(T), then abort and roll back transaction T; otherwise, create a new version Xj of X with read_TS(Xj) = write_TS(Xj) = TS(T).
2. If transaction T issues a read_item(X) operation, find the version i of X that has the highest write_TS(Xi) of all versions of X that is also less than or equal to TS(T); then return the value of Xi to transaction T, and set the value of read_TS(Xi) to the larger of TS(T) and the current read_TS(Xi).

5.9.2 Multiversion Two-Phase Locking Using Certify Locks
In this multiple-mode locking scheme, there are three locking modes for an item— read, write, and certify—instead of just the two modes (read, write) discussed previously. Hence, the state of LOCK(X) for an item X can be one of read-locked, write-locked, certify-locked, or unlocked. In the standard locking scheme, with only read and write locks, a write lock is an exclusive lock. We can describe the relationship between read and write locks in the standard scheme by means of the lock compatibility table shown in Figure 5.14(a). An entry of Yes means that if a transaction T holds the type of lock specified in the column header on item X and if transaction T′ requests the type of lock specified in the row header on the same item X, then T′ can obtain the lock because the locking modes are compatible. On the other hand, an entry of No in the table indicates that the locks are not compatible, so T′ must wait until T releases the lock.

In the standard locking scheme, once a transaction obtains a write lock on an item, no other transactions can access that item. The idea behind multiversion 2PL is to allow other transactions T′ to read an item X while a single transaction T holds a write lock on X. This is accomplished by allowing two versions for each item X; one version, the committed version, must always have been written by some committed transaction. The second local version X′ can be created when a transaction T acquires a write lock on X. Other transactions can continue to read the committed version of X while T holds the write lock. Transaction T can write the value of X′ as needed, without affecting the value of the committed version X. However, once T is ready to commit, it must obtain a certify lock on all items that it currently holds write locks on before it can commit; this is another form of lock upgrading. 

The certify lock is not compatible with read locks, so the transaction may have to delay its commit until all its write-locked items are released by any reading transactions in order to obtain the certify locks. Once the certify locks—which are exclusive locks—are acquired, the committed version X of the data item is set to the value of version X′, version X′ is discarded, and the certify locks are then released. The lock compatibility table for this scheme is shown in Figure 5.14(b).
[image: ]
Figure 5.14: Lock compatibility tables.
(a) Lock compatibility table for read/write locking scheme.
(b) Lock compatibility table for read/write/certify locking scheme.

5.10 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control
In all the concurrency control techniques we have discussed so far, a certain degree of checking is done before a database operation can be executed. For example, in locking, a check is done to determine whether the item being accessed is locked. In timestamp ordering, the transaction timestamp is checked against the read and write timestamps of the item. Such checking represents overhead during transaction execution, with the effect of slowing down the transactions.

In optimistic concurrency control techniques, also known as validation or certification techniques, no checking is done while the transaction is executing.

5.10.1 Validation-Based (Optimistic) Concurrency Control
In this scheme, updates in the transaction are not applied directly to the database items on disk until the transaction reaches its end and is validated. During transaction execution, all updates are applied to local copies of the data items that are kept for the transaction. At the end of transaction execution, a validation phase checks whether any of the transaction’s updates violate serializability. Certain information needed by the validation phase must be kept by the system. If serializability is not violated, the transaction is committed and the database is updated from the local copies; otherwise, the transaction is aborted and then restarted later.

There are three phases for this concurrency control protocol:
1. Read phase. A transaction can read values of committed data items from the database. However, updates are applied only to local copies (versions) of the data items kept in the transaction workspace.
2. Validation phase. Checking is performed to ensure that serializability will not be violated if the transaction updates are applied to the database.
3. Write phase. If the validation phase is successful, the transaction updates are applied to the database; otherwise, the updates are discarded and the transaction is restarted.

The write_sets and read_sets of the transactions be kept by the system. Additionally, start and end times for the three phases need to be kept for each transaction. Recall that the write_set of a transaction is the set of items it writes, and the read_set is the set of items it reads. In the validation phase for transaction Ti, the protocol checks that Ti does not interfere with any recently committed transactions or with any other concurrent transactions that have started their validation phase. 

The validation phase for Ti checks that, for each such transaction Tj that is either recently committed or is in its validation phase, one of the following conditions holds:
1. Transaction Tj completes its write phase before Ti starts its read phase.
2. Ti starts its write phase after Tj completes its write phase, and the read_set of Ti has no items in common with the write_set of Tj.
3. Both the read_set and write_set of Ti have no items in common with the write_set of Tj, and Tj completes its read phase before Ti completes its read phase.

5.10.2 Concurrency Control Based on Snapshot Isolation
Snapshot isolation is that a transaction sees the data items that it reads based on the committed values of the items in the database snapshot (or database state) when the transaction starts. Snapshot isolation will ensure that the phantom record problem does not occur, since the database transaction, or, in some cases, the database statement, will only see the records that were committed in the database at the time the transaction started.

Any insertions, deletions, or updates that occur after the transaction starts will not be seen by the transaction. In addition, snapshot isolation does not allow the problems of dirty read and nonrepeatable read to occur. However, certain anomalies that violate serializability can occur when snapshot isolation is used as the basis for concurrency control. 
In this scheme, read operations do not require read locks to be applied to the items, thus reducing the overhead associated with two-phase locking. However, write operations do require write locks. Thus, for transactions that have many reads, the performance is much better than 2PL. When writes do occur, the system will have to keep track of older versions of the updated items in a temporary version store (sometimes known as tempstore), with the timestamps of when the version was created. This is necessary so that a transaction that started before the item was written can still read the value (version) of the item that was in the database snapshot when the transaction started.

Variations of snapshot isolation (SI) techniques, known as serializable snapshot isolation (SSI), have been proposed and implemented in some of the DBMSs that use SI as their primary concurrency control method. For example, recent versions of the PostGRES DBMS allow the user to choose between basic SI and SSI. The tradeoff is ensuring full serializability with SSI versus living with possible rare anomalies but having better performance with basic SI. 

5.11 Granularity of Data Items and Multiple Granularity Locking
All concurrency control techniques assume that the database is formed of a number of named data items. A database item could be chosen to be one of the following:
· A database record
· A field value of a database record
· A disk block
· A whole file
· The whole database

5.11.1 Granularity Level Considerations for Locking
The size of data items is often called the data item granularity. Fine granularity refers to small item sizes, whereas coarse granularity refers to large item sizes. Several tradeoffs must be considered in choosing the data item size.  First, notice the larger the data item size is, the lower the degree of concurrency permitted. On the other hand, the smaller the data item size is, the more the number of items in the database. In addition, more storage space will be required for the lock table. For timestamps, storage is required for the read_TS and write_TS for each data item, and there will be similar overhead for handling a large number of items.

Given the above tradeoffs, an obvious question can be asked: What is the best item size? The answer is that it depends on the types of transactions involved. If a typical transaction accesses a small number of records, it is advantageous to have the data item granularity be one record. On the other hand, if a transaction typically accesses many records in the same file, it may be better to have block or file granularity so that the transaction will consider all those records as one (or a few) data items.

5.11.2 Multiple Granularity Level Locking
Figure 5.15 shows a simple granularity hierarchy with a database containing two files, each file containing several disk pages, and each page containing several records. This can be used to illustrate a multiple granularity level 2PL protocol, with shared/exclusive locking modes, where a lock can be requested at any level. However, additional types of locks will be needed to support such a protocol efficiently

To make multiple granularity level locking practical, additional types of locks, called intention locks, are needed. The idea behind intention locks is for a transaction to indicate, along the path from the root to the desired node, what type of lock (shared or exclusive) it will require from one of the node’s descendants. There are three types of intention locks:
1. Intention-shared (IS) indicates that one or more shared locks will be requested on some descendant node(s).
2. Intention-exclusive (IX) indicates that one or more exclusive locks will be requested on some descendant node(s).
3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared mode but that one or more exclusive locks will be requested on some descendant node(s).

The compatibility table of the three intention locks, and the actual shared and exclusive locks, is shown in Figure 5.16. In addition to the three types of intention locks, an appropriate locking protocol must be used. The multiple granularity locking (MGL) protocol consists of the following rules:
1. The lock compatibility (based on Figure 21.8) must be adhered to.
2. The root of the tree must be locked first, in any mode.
3. A node N can be locked by a transaction T in S or IS mode only if the parent node N is already locked by transaction T in either IS or IX mode.
4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the parent of node N is already locked by transaction T in either IX or SIX mode.
5. A transaction T can lock a node only if it has not unlocked any node (to enforce the 2PL protocol).
6. A transaction T can unlock a node, N, only if none of the children of node N are currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 state the conditions when a transaction may lock a given node in any of the lock modes. Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable schedules. Basically, the locking starts from the root and goes down the tree until the node that needs to be locked is encountered, whereas unlocking starts from the locked node and goes up the tree until the root itself is unlocked. To illustrate the MGL protocol with the database hierarchy in Figure 5.15, consider the following three transactions:
1. T1 wants to update record r111 and record r211.
2. T2 wants to update all records on page p12.
3. T3 wants to read record r11j and the entire f2 file.
[image: ]

Figure 5.15: A granularity hierarchy for illustrating multiple granularity level locking.

Figure 5.17 shows a possible serializable schedule for these three transactions. Only the lock and unlock operations are shown. The notation <lock_type>(<item>) is used to display the locking operations in the schedule.

The multiple granularity level protocol is especially suited when processing a mix of transactions that include (1) short transactions that access only a few items (records or fields) and (2) long transactions that access entire files. In this environment, less transaction blocking and less locking overhead are incurred by such a protocol when compared to a single-level granularity locking approach.
[image: ]
Figure 5.16: Lock compatibility matrix for multiple granularity locking.

[image: ]
Figure 5.17: Lock operations to illustrate a Serializable schedule.
5.12 Using Locks for Concurrency Control in Indexes
Two-phase locking can also be applied to B-tree and B+-tree indexes, where the nodes of an index correspond to disk pages. However, holding locks on index pages until the shrinking phase of 2PL could cause an undue amount of transaction blocking because searching an index always starts at the root. For example, if a transaction wants to insert a record (write operation), the root would be locked in exclusive mode, so all other conflicting lock requests for the index must wait until the transaction enters its shrinking phase. This blocks all other transactions from accessing the index, so in practice other approaches to locking an index must be used.

The tree structure of the index can be taken advantage of when developing a concurrency control scheme. For example, when an index search (read operation) is being executed, a path in the tree is traversed from the root to a leaf. Once a lowerlevel node in the path has been accessed, the higher-level nodes in that path will not be used again. So once a read lock on a child node is obtained, the lock on the parent node can be released. When an insertion is being applied to a leaf node, then a specific leaf node must be locked in exclusive mode. However, if that node is not full, the insertion will not cause changes to higher-level index nodes, which implies that they need not be locked exclusively.

An alternative, more optimistic approach would be to request and hold shared locks on the nodes leading to the leaf node, with an exclusive lock on the leaf. If the insertion causes the leaf to split, insertion will propagate to one or more higher-level nodes. Then, the locks on the higher-level nodes can be upgraded to exclusive mode.

Another approach to index locking is to use a variant of the B+-tree, called the B-link tree. In a B-link tree, sibling nodes on the same level are linked at every level. This allows shared locks to be used when requesting a page and requires that the lock be released before accessing the child node. For an insert operation, the shared lock on a node would be upgraded to exclusive mode. If a split occurs, the parent node must be relocked in exclusive mode. One complication is for search operations executed concurrently with the update

5.13 Other Concurrency Control Issues
5.13.1 Insertion, Deletion, and Phantom Records
When a new data item is inserted in the database, it obviously cannot be accessed until after the item is created and the insert operation is completed. In a locking environment, a lock for the item can be created and set to exclusive (write) mode; the lock can be released at the same time as other write locks would be released, based on the concurrency control protocol being used. For a timestamp-based protocol, the read and write timestamps of the new item are set to the timestamp of the creating transaction.

Next, consider a deletion operation that is applied on an existing data item. For locking protocols, again an exclusive (write) lock must be obtained before the transaction can delete the item. For timestamp ordering, the protocol must ensure that no later transaction has read or written the item before allowing the item to be deleted.

A situation known as the phantom problem can occur when a new record that is being inserted by some transaction T satisfies a condition that a set of records accessed by another transaction T′ must satisfy. For example, suppose that transaction T is inserting a new EMPLOYEE record whose Dno = 5, whereas transaction T′ is accessing all EMPLOYEE records whose Dno = 5 (say, to add up all their Salary values to calculate the personnel budget for department 5). If the equivalent serial order is T followed by T′, then T′ must read the new EMPLOYEE record and include its Salary in the sum calculation. For the equivalent serial order T′ followed by T, the new salary should not be included. Notice that although the transactions logically conflict, in the latter case there is really no record (data item) in common between the two transactions, since T′ may have locked all the records with Dno = 5 before T inserted the new record. This is because the record that causes the conflict is a phantom record that has suddenly appeared in the database on being inserted.

 If other operations in the two transactions conflict, the conflict due to the phantom record may not be recognized by the concurrency control protocol One solution to the phantom record problem is to use index locking.

A more general technique, called predicate locking, would lock access to all records that satisfy an arbitrary predicate (condition) in a similar manner; however, predicate locks have proved to be difficult to implement efficiently.

5.13.2 Interactive Transactions
Another problem occurs when interactive transactions read input and write output to an interactive device, such as a monitor screen, before they are committed. The problem is that a user can input a value of a data item to a transaction T that is based on some value written to the screen by transaction T′, which may not have committed. This dependency between T and T′ cannot be modeled by the system concurrency control method, since it is only based on the user interacting with the two transactions.

An approach to dealing with this problem is to postpone output of transactions to the screen until they have committed.

5.13.3 Latches
Locks held for a short duration are typically called latches. Latches do not follow the usual concurrency control protocol such as two-phase locking. For example, a latch can be used to guarantee the physical integrity of a disk page when that page is being written from the buffer to disk. A latch would be acquired for the page, the page written to disk, and then the latch released.

Database Recovery Techniques

5.14 Recovery Concepts
5.14.1 Recovery Outline and Categorization of Recovery Algorithms

Recovery from transaction failures usually means that the database is restored to the most recent consistent state before the time of failure. To do this, the system must keep information about the changes that were applied to data items by the various transactions. This information is typically kept in the system log.

A typical strategy for recovery may be summarized informally as follows:
1. If there is extensive damage to a wide portion of the database due to catastrophic failure, such as a disk crash, the recovery method restores a past copy of the database that was backed up to archival storage (typically tape or other large capacity offline storage media) and reconstructs a more current state by reapplying or redoing the operations of committed transactions from the backed-up log, up to the time of failure.
2. When the database on disk is not physically damaged, and a noncatastrophic failure of types 1 through 4 has occurred, the recovery strategy is to identify any changes that may cause an inconsistency in the database. 
Conceptually, we can distinguish two main policies for recovery from noncatastrophic transaction failures: deferred update and immediate update. The deferred update techniques do not physically update the database on disk until after a transaction commits; then the updates are recorded in the database. Before reaching commit, all transaction updates are recorded in the local transaction workspace or in the main memory buffers that the DBMS maintains. 

Before commit, the updates are recorded persistently in the log file on disk, and then after commit, the updates are written to the database from the main memory buffers. If a transaction fails before reaching its commit point, it will not have changed the database on disk in any way, so UNDO is not needed. It may be necessary to REDO the effect of the operations of a committed transaction from the log, because their effect may not yet have been recorded in the database on disk. Hence, deferred update is also known as the NO-UNDO/REDO algorithm. 

In the immediate update techniques, the database may be updated by some operations of a transaction before the transaction reaches its commit point. However, these operations must also be recorded in the log on disk by force-writing before they are applied to the database on disk, making recovery still possible. If a transaction fails after recording some changes in the database on disk but before reaching its commit point, the effect of its operations on the database must be undone; that is, the transaction must be rolled back. In the general case of immediate update, both undo and redo may be required during recovery. This technique, known as the UNDO/REDO algorithm, requires both operations during recovery and is used most often in practice. A variation of the algorithm where all updates are required to be recorded in the database on disk before a transaction commits requires undo only, so it is known as the UNDO/NO-REDO algorithm. 

The UNDO and REDO operations are required to be idempotent—that is, executing an operation multiple times is equivalent to executing it just once. In fact, the whole recovery process should be idempotent because if the system were to fail during the recovery process, the next recovery attempt might UNDO and REDO certain write_item operations that had already been executed during the first recovery process. The result of recovery from a system crash during recovery should be the same as the result of recovering when there is no crash during recovery!

5.14.2 Caching (Buffering) of Disk Blocks
The recovery process is often closely intertwined with operating system functions— in particular, the buffering of database disk pages in the DBMS main memory cache. Typically, multiple disk pages that include the data items to be updated are cached into main memory buffers and then updated in memory before being written back to disk. The caching of disk pages is traditionally an operating system function, but because of its importance to the efficiency of recovery procedures, it is handled by the DBMS by calling low-level operating systems routines.

In general, it is convenient to consider recovery in terms of the database disk pages (blocks). Typically a collection of in-memory buffers, called the DBMS cache, is kept under the control of the DBMS for the purpose of holding these buffers. A directory for the cache is used to keep track of which database items are in the buffers. This can be a table of <Disk_page_address, Buffer_location, … > entries. When the DBMS requests action on some item, first it checks the cache directory to determine whether the disk page containing the item is in the DBMS cache. If it is not, the item must be located on disk, and the appropriate disk pages are copied into the cache. It may be necessary to replace (or flush) some of the cache buffers to make space available for the new item.

The entries in the DBMS cache directory hold additional information relevant to buffer management. Associated with each buffer in the cache is a dirty bit, which can be included in the directory entry to indicate whether or not the buffer has been modified. When a page is first read from the database disk into a cache buffer, a new entry is inserted in the cache directory with the new disk page address, and the dirty bit is set to 0 (zero). As soon as the buffer is modified, the dirty bit for the corresponding directory entry is set to 1 (one). Additional information, such as the transaction id(s) of the transaction(s) that modified the buffer, are also kept in the directory. When the buffer contents are replaced (flushed) from the cache, the contents must first be written back to the corresponding disk page only if its dirty bit is 1. Another bit, called the pin-unpin bit, is also needed—a page in the cache is pinned (bit value 1 (one)) if it cannot be written back to disk as yet. For example, the recovery protocol may restrict certain buffer pages from being written back to the disk until the transactions that changed this buffer have committed.

Two main strategies can be employed when flushing a modified buffer back to disk. The first strategy, known as in-place updating, writes the buffer to the same original disk location, thus overwriting the old value of any changed data items on disk.Hence, a single copy of each database disk block is maintained. The second strategy, known as shadowing, writes an updated buffer at a different disk location, so multiple versions of data items can be maintained, but this approach is not typically used in practice. In general, the old value of the data item before updating is called the before image (BFIM), and the new value after updating is called the after image (AFIM). If shadowing is used, both the BFIM and the AFIM can be kept on disk; hence, it is not strictly necessary to maintain a log for recovering. We briefly discuss recovery based on shadowing.

5.14.3 Write-Ahead Logging, Steal/No-Steal, and Force/No-Force
The recovery mechanism must ensure that the BFIM of the data item is recorded in the appropriate log entry and that the log entry is flushed to disk before the BFIM is overwritten with the AFIM in the database on disk. This process is generally known as write-ahead logging and is necessary so we can UNDO the operation if this is required during recovery. We need to distinguish between two types of log entry information included for a write command: the information needed for UNDO value (AFIM) of the item written by the operation since this is needed to redo the effect of the operation from the log. The UNDO-type log entries include the old value (BFIM) of the item since this is needed to undo the effect of the operation from the log. In an UNDO/REDO algorithm, both BFIM and AFIM are recorded into a single log entry. Additionally, when cascading rollback is possible, read_item entries in the log are considered to
be UNDO-type entries.

The DBMS cache holds the cached database disk blocks in main memory buffers. The DBMS cache includes not only data file blocks, but also index file blocks and log file blocks from the disk. When a log record is written, it is stored in the current log buffer in the DBMS cache. The log is simply a sequential disk file, and the DBMS cache may contain several log blocks in main memory buffers. When an update to a data block—stored in the DBMS cache—is made, an associated log record is written to the last log buffer in the DBMS cache. With the write-ahead logging approach, the log buffers (blocks) that contain the associated log records for a particular data block update must first be written to disk before the data block itself can be written
back to disk from its main memory buffer. 

Standard DBMS recovery terminology includes the terms steal/no-steal and force/no-force, which specify the rules that govern when a page from the database cache can be written to disk:
1. If a cache buffer page updated by a transaction cannot be written to disk before the transaction commits, the recovery method is called a no-steal approach. The pin-unpin bit will be set to 1 (pin) to indicate that a cache buffer cannot be written back to disk. On the other hand, if the recovery protocol allows writing an updated buffer before the transaction commits, it is called steal. Steal is used when the DBMS cache (buffer) manager needs a buffer frame for another transaction and the buffer manager replaces an existing page that had been updated but whose transaction has not committed. The no-steal rule means that UNDO will never be needed during recovery, since a committed transaction will not have any of its updates on disk before it commits.
2. If all pages updated by a transaction are immediately written to disk before the transaction commits, the recovery approach is called a force approach. Otherwise, it is called no-force. The force rule means that REDO will never be needed during recovery, since any committed transaction will have all its updates on disk before it is committed.

To permit recovery when in-place updating is used, the appropriate entries required for recovery must be permanently recorded in the log on disk before changes are applied to the database. For example, consider the following write-ahead logging (WAL) protocol for a recovery algorithm that requires both UNDO and REDO:
1. The before image of an item cannot be overwritten by its after image in the database on disk until all UNDO-type log entries for the updating transaction— up to this point—have been force-written to disk.
2. The commit operation of a transaction cannot be completed until all the REDO-type and UNDO-type log records for that transaction have been force written to disk.

To facilitate the recovery process, the DBMS recovery subsystem may need to maintain a number of lists related to the transactions being processed in the system. These include a list for active transactions that have started but not committed as yet, and they may also include lists of all committed and aborted transactions. Maintaining these lists makes the recovery process more efficient.

5.14.4 Checkpoints in the System Log and Fuzzy Checkpointing
Another type of entry in the log is called a checkpoint.3 A [checkpoint, list of active transactions] record is written into the log periodically at that point when the system writes out to the database on disk all DBMS buffers that have been modified. As a consequence of this, all transactions that have their [commit, T ] entries in the log before a [checkpoint] entry do not need to have their WRITE operations redone in case of a system crash, since all their updates will be recorded in the database on disk during check pointing. As part of check pointing, the list of transaction ids for active transactions at the time of the checkpoint is included in the checkpoint record, so that these transactions can be easily identified during recovery.

The recovery manager of a DBMS must decide at what intervals to take a checkpoint. The interval may be measured in time—say, every m minutes—or in the number t of committed transactions since the last checkpoint, where the values of m or t are system parameters. Taking a checkpoint consists of the following actions:
1. Suspend execution of transactions temporarily.
2. Force-write all main memory buffers that have been modified to disk.
3. Write a [checkpoint] record to the log, and force-write the log to disk.
4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include additional information, such as a list of active transaction ids, and the locations (addresses) of the first and most recent (last) records in the log for each active transaction. This can facilitate undoing transaction operations in the event that a transaction must be rolled back.

The time needed to force-write all modified memory buffers may delay transaction processing because of step 1, which is not acceptable in practice. To overcome this, it is common to use a technique called fuzzy checkpointing. In this technique, the system can resume transaction processing after a [begin_checkpoint] record is written to the log without having to wait for step 2 to finish. When step 2 is completed, an [end_checkpoint, … ] record is written in the log with the relevant information collected during checkpointing. However, until step 2 is completed, the previous checkpoint record should remain valid. To accomplish this, the system maintains a file on disk that contains a pointer to the valid checkpoint, which continues to point to the previous checkpoint record in the log. Once step 2 is concluded, that pointer is changed to point to the new checkpoint in the log.

5.14.5 Transaction Rollback and Cascading Rollback
If a transaction fails for whatever reason after updating the database, but before the transaction commits, it may be necessary to roll back the transaction. If any data item values have been changed by the transaction and written to the database on disk, they must be restored to their previous values (BFIMs). The undo-type log entries are used to restore the old values of data items that must be rolled back.

If a transaction T is rolled back, any transaction S that has, in the interim, read the value of some data item X written by T must also be rolled back. Similarly, once S is rolled back, any transaction R that has read the value of some data item Y written by S must also be rolled back; and so on. This phenomenon is called cascading rollback, and it can occur when the recovery protocol ensures recoverable schedules but does not ensure strict or cascadeless schedules. Understandably, cascading rollback can be complex and time-consuming. That is why almost all recovery mechanisms are designed so that cascading rollback is never required.

Figure 5.18 shows an example where cascading rollback is required. The read and write operations of three individual transactions are shown in Figure 5.18(a). Figure 5.18(b) shows the system log at the point of a system crash for a particular execution schedule of these transactions. The values of data items A, B, C, and D, which are used by the transactions, are shown to the right of the system log entries. We assume that the original item values, shown in the first line, are A = 30, B = 15, C = 40, and D = 20. At the point of system failure, transaction T3 has not reached its conclusion and must be rolled back. The WRITE operations of T3, marked by a single * in Figure 5.18(b), are the T3 operations that are undone during transaction rollback. Figure 5.18(c) graphically shows the operations of the different transactions along the time axis.

[image: ]
[image: ]
[image: ]
Figure 5.18: Illustrating cascading rollback (a process that never occurs in strict or cascadeless schedules). 
(a) The read and write operations of three transactions. 
(b) System log at point of crash. 
(c) Operations before the crash.

We must now check for cascading rollback. From Figure 5.18(c), we see that transaction T2 reads the value of item B that was written by transaction T3; this can also be determined by examining the log. Because T3 is rolled back, T2 must now be rolled back, too. The WRITE operations of T2, marked by ** in the log, are the ones that are undone. Note that only write_item operations need to be undone during transaction rollback; read_item operations are recorded in the log only to determine whether cascading rollback of additional transactions is necessary. In practice, cascading rollback of transactions is never required because practical
recovery methods guarantee cascadeless or strict schedules. Hence, there is also no
need to record any read_item operations in the log because these are needed only for
determining cascading rollback.
5.14.6 Transaction Actions That Do Not Affect the Database
A transaction will have actions that do not affect the database, such as generating and printing messages or reports from information retrieved from the database. If a transaction fails before completion, we may not want the user to get these reports, since the transaction has failed to complete. If such erroneous reports are produced, part of the recovery process would have to inform the user that these reports are wrong, since the user may take an action that is based on these reports and that affects the database. Hence, such reports should be generated only after the transaction reaches its commit point. A common method of dealing with such actions is to issue the commands that generate the reports but keep them as batch jobs, which are executed only after the transaction reaches its commit point. If the transaction fails, the batch jobs are canceled.

5.15 NO-UNDO/REDO Recovery Based on Deferred Update
The idea behind deferred update is to defer or postpone any actual updates to the database on disk until the transaction completes its execution successfully and reaches its commit point. During transaction execution, the updates are recorded only in the log and in the cache buffers. After the transaction reaches its commit point and the log is forcewritten to disk, the updates are recorded in the database. If a transaction fails before reaching its commit point, there is no need to undo any operations because the transaction has not affected the database on disk in any way. Therefore, only REDOtype log entries are needed in the log, which include the new value (AFIM) of the item written by a write operation. The UNDO-type log entries are not needed since no undoing of operations will be required during recovery. Although this may simplify the recovery process, it cannot be used in practice unless transactions are short and each transaction changes few items. For other types of transactions, there is the potential for running out of buffer space because transaction changes must be held in the cache buffers until the commit point, so many cache buffers will be pinned and cannot be replaced.

We can state a typical deferred update protocol as follows:
1. A transaction cannot change the database on disk until it reaches its commit point; hence all buffers that have been changed by the transaction must be pinned until the transaction commits (this corresponds to a no-steal policy).
2. A transaction does not reach its commit point until all its REDO-type log entries are recorded in the log and the log buffer is force-written to disk.

Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL) protocol. Because the database is never updated on disk until after the transaction commits, there is never a need to UNDO any operations. REDO is needed in case the system fails after a transaction commits but before all its changes are recorded in the database on disk. In this case, the transaction operations are redone from the log entries during recovery.

For multiuser systems with concurrency control, the concurrency control and recovery processes are interrelated. Consider a system in which concurrency control uses strict two-phase locking, so the locks on written items remain in effect until the transaction reaches its commit point. After that, the locks can be released. This ensures strict and serializable schedules. Assuming that [checkpoint] entries are included in the log, a possible recovery algorithm for this case, which we call RDU_M (Recovery using Deferred Update in a Multiuser environment), is given next.

Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of transactions maintained by the system: the committed transactions T since the last checkpoint (commit list), and the active transactions T′ (active list). REDO all the WRITE operations of the committed transactions from the log, in the order in which they were written into the log. The transactions that are active and did not commit are effectively canceled and must be resubmitted.

The REDO procedure is defined as follows:
Procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP consists of examining its log entry [write_item, T, X, new_value] and setting the value of item X in the database to new_value, which is the after image (AFIM).

Figure 5.19 illustrates a timeline for a possible schedule of executing transactions. When the checkpoint was taken at time t1, transaction T1 had committed, whereas transactions T3 and T4 had not. Before the system crash at time t2, T3 and T2 were committed but not T4 and T5. According to the RDU_M method, there is no need to redo the write_item operations of transaction T1—or any transactions committed before the last checkpoint time t1. The write_item operations of T2 and T3 must be redone, however, because both transactions reached their commit points after the last checkpoint. Recall that the log is force-written before committing a transaction. Transactions T4 and T5 are ignored: They are effectively canceled or rolled back because none of their write_item operations were recorded in the database on disk under the deferred update protocol (no-steal policy).

The NO-UNDO/REDO recovery algorithm more efficient by noting that, if a data item X has been updated—as indicated in the log entries—more than once by committed transactions since the last checkpoint, it is only necessary to REDO the last update of X from the log during recovery because the other updates would be overwritten by this last REDO. In this case, we start from the end of the log; then, whenever an item is redone, it is added to a list of redone items. Before REDO is applied to an item, the list is checked; if the item appears on the list, it is not redone again, since its latest value has already been recovered.
[image: ]

Figure 5.19: An example of a recovery timeline to illustrate the effect of checkpointing.

If a transaction is aborted for any reason (say, by the deadlock detection method), it is simply resubmitted, since it has not changed the database on disk. A drawback of the method described here is that it limits the concurrent execution of transactions because all write-locked items remain locked until the transaction reaches its commit point. Additionally, it may require excessive buffer space to hold all updated items until the transactions commit. The method’s main benefit is that transaction operations never need to be undone, for two reasons:
1. A transaction does not record any changes in the database on disk until after it reaches its commit point—that is, until it completes its execution successfully. Hence, a transaction is never rolled back because of failure during transaction execution.
2. A transaction will never read the value of an item that is written by an uncommitted transaction, because items remain locked until a transaction reaches its commit point. Hence, no cascading rollback will occur.

Figure 5.20 shows an example of recovery for a multiuser system that utilizes the recovery and concurrency control method just described.

[image: ]
[image: ]
Figure 5.20: An example of recovery using deferred update with concurrent transactions.
(a) The READ and WRITE operations of four transactions.
                            (b) System log at the point of crash.

5.16 Recovery Techniques Based on Immediate Update
In these techniques, when a transaction issues an update command, the database on disk can be updated immediately, without any need to wait for the transaction to reach its commit point. Notice that it is not a requirement that every update be applied immediately to disk; it is just possible that some updates are applied to disk before the transaction commits.

Provisions must be made for undoing the effect of update operations that have been applied to the database by a failed transaction. This is accomplished by rolling back the transaction and undoing the effect of the transaction’s write_item operations. Therefore, the UNDO-type log entries, which include the old value (BFIM) of the item, must be stored in the log. Because UNDO can be needed during recovery, these methods follow a steal strategy for deciding when updated main memory buffers can be written back to disk.

Theoretically, we can distinguish two main categories of immediate update algorithms.
1. If the recovery technique ensures that all updates of a transaction are recorded in the database on disk before the transaction commits, there is never a need to REDO any operations of committed transactions. This is called the UNDO/NO-REDO recovery algorithm. In this method, all updates by a transaction must be recorded on disk before the transaction commits, so that REDO is never needed. Hence, this method must utilize the steal/force strategy for deciding when updated main memory buffers are written back to disk.
2. If the transaction is allowed to commit before all its changes are written to the database, we have the most general case, known as the UNDO/REDO recovery algorithm. In this case, the steal/no-force strategy is applied. This is also the most complex technique, but the most commonly used in practice. We will outline an UNDO/REDO recovery algorithm and leave it as an exercise for the reader to develop the UNDO/NO-REDO variation.

When concurrent execution is permitted, the recovery process again depends on the protocols used for concurrency control. The procedure RIU_M (Recovery using Immediate Updates for a Multiuser environment) outlines a recovery algorithm for concurrent transactions with immediate update (UNDO/REDO recovery). Assume that the log includes checkpoints and that the concurrency control protocol produces strict schedules—as, for example, the strict two-phase locking protocol does. Recall that a strict schedule does not allow a transaction to read or write an item unless the transaction that wrote the item has committed. However, deadlocks can occur in strict two-phase locking, thus requiring abort and UNDO of transactions. For a strict schedule, UNDO of an operation requires changing the item back to its old value (BFIM).

Procedure RIU_M (UNDO/REDO with checkpoints).
1. Use two lists of transactions maintained by the system: the committed transactions since the last checkpoint and the active transactions.
2. Undo all the write_item operations of the active (uncommitted) transactions, using the UNDO procedure. The operations should be undone in the reverse of the order in which they were written into the log.
3. Redo all the write_item operations of the committed transactions from the log, in the order in which they were written into the log, using the REDO procedure defined earlier.

The UNDO procedure is defined as follows:
Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op consists of examining its log entry [write_item, T, X, old_value, new_value] and setting the value of item X in the database to old_value, which is the before image (BFIM). Undoing a number of write_item operations from one or more transactions from the log must proceed in the reverse order from the order in which the operations were written in the log.

5.17 Shadow Paging
This recovery scheme does not require the use of a log in a single-user environment. In a multiuser environment, a log may be needed for the concurrency control method. Shadow paging considers the database to be made up of a number of fixedsize disk pages (or disk blocks)—say, n—for recovery purposes. A directory with n entries is constructed, where the ith entry points to the ith database page on disk.

The directory is kept in main memory if it is not too large, and all references—reads or writes—to database pages on disk go through it. When a transaction begins executing, the current directory—whose entries point to the most recent or current database pages on disk—is copied into a shadow directory. The shadow directory is then saved on disk while the current directory is used by the transaction.

During transaction execution, the shadow directory is never modified. When a write_item operation is performed, a new copy of the modified database page is created, but the old copy of that page is not overwritten. Instead, the new page is written elsewhere—on some previously unused disk block. The current directory entry is modified to point to the new disk block, whereas the shadow directory is not modified and continues to point to the old unmodified disk block. Figure 5.21 illustrates the concepts of shadow and current directories. For pages updated by the transaction, two versions are kept. The old version is referenced by the shadow directory and the new version by the current directory.

To recover from a failure during transaction execution, it is sufficient to free the modified database pages and to discard the current directory. The state of the database before transaction execution is available through the shadow directory, and that state is recovered by reinstating the shadow directory. The database thus is returned to its state prior to the transaction that was executing when the crash occurred, and any modified pages are discarded. Committing a transaction corresponds to discarding the previous shadow directory. Since recovery involves neither undoing nor redoing data items, this technique can be categorized as a NO-UNDO/NO-REDO technique for recovery.

In a multiuser environment with concurrent transactions, logs and checkpoints must be incorporated into the shadow paging technique. One disadvantage of shadow paging is that the updated database pages change location on disk. This makes it difficult to keep related database pages close together on disk without complex storage management strategies. Furthermore, if the directory is large, the overhead of writing shadow directories to disk as transactions commit is significant. A further complication is how to handle garbage collection when a transaction commits. The old pages referenced by the shadow directory that have been updated must be released and added to a list of free pages for future use. These pages are no longer needed after the transaction commits. Another issue is that the operation to migrate between current and shadow directories must be implemented as an atomic operation.


[image: ]
Figure 5.21: An example of shadow paging.



5.18 Database Backup and Recovery from Catastrophic Failures
The recovery manager of a DBMS must also be equipped to handle more catastrophic failures such as disk crashes. The main technique used to handle such crashes is a database backup, in which the whole database and the log are periodically copied onto a cheap storage medium such as magnetic tapes or other large capacity offline storage devices. In case of a catastrophic system failure, the latest backup copy can be reloaded from the tape to the disk, and the system can be restarted. Data from critical applications such as banking, insurance, stock market, and other databases is periodically backed up in its entirety and moved to physically separate safe locations. Subterranean storage vaults have been used to protect such data from flood, storm, earthquake, or fire damage. 

To avoid losing all the effects of transactions that have been executed since the last backup, it is customary to back up the system log at more frequent intervals than full database backup by periodically copying it to magnetic tape. The system log is usually substantially smaller than the database itself and hence can be backed up more frequently. Therefore, users do not lose all transactions they have performed since the last database backup. All committed transactions recorded in the portion of the system log that has been backed up to tape can have their effect on the database redone. A new log is started after each database backup. Hence, to recover from disk failure, the database is first recreated on disk from its latest backup copy on tape. Following that, the effects of all the committed transactions whose operations have been recorded in the backed-up copies of the system log are reconstructed.

IMPORTANT QUESTIONS

Transaction Processing: 
1. Explain transaction processing in brief.
2. Why Concurrency Control Is Needed?
3. Why Recovery Is Needed?
4. Explain transaction states.
5. Explain system log in explain.
6. Explain DBMS-Specific Buffer Replacement Policies.
7. Explain Desirable properties of Transactions.
8. Write a note on 
a. Characterizing schedules based on recoverability
b. Characterizing schedules based on Serializability
c. Transaction support in SQL. 

Concurrency Control in Databases: 
1. Explain types of locks and system lock tables.
2. Write an algorithm for Locking and unlocking operations for two modes locks.
3. Write a note on
a. Dealing with Deadlock and Starvation
b. Guaranteeing Serializability by Two-Phase Locking
c. Deadlock Detection.
d. Multiversion Technique Based on Timestamp Ordering
4. Explain Concurrency Control Based on Timestamp Ordering.
5. Explain in brief Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control.
6. Explain Granularity of Data Items and Multiple Granularity Locking.


Introduction to Database Recovery Protocols: 

1. Explain Categorization of Recovery Algorithms.
2. What is Caching (Buffering) of Disk Blocks. Explain
3. Write a note on
a. Write-Ahead Logging, 
b. Steal/No-Steal, and 
c. Force/No-Force
4. Explain Transaction Rollback and Cascading Rollback.
5. Which are the transactions Actions That Do Not Affect the Database?
6. Which are the recoveries Techniques Based on Immediate Update? Explain
7. Write a note on
a. Shadow Paging
b. Database Backup and 
c. Recovery from Catastrophic Failures

HMSIT,Tumkur	Page 1

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.png

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.png

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image1.emf

image2.emf


Module 

–

 

5                                                                                                       DBMS

 

 

HMSIT,Tumkur

 

Page 

1

 

 

Transaction Processing: 

Introduction to Transaction Processing, Transaction and System 

concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, 

Characterizing schedules based on Serializability, Transaction support 

in SQL. 

 

 

Concurrency Control in

 

Databases: 

Two

-

phase locking techniques for Concurrency control, 

Concurrency control based on Timestamp ordering, Multiversion Concurrency control 

techniques, Validation Concurrency control techniques, Granularity of Data i

tems and Multiple 

Granularity Locking. 

 

 

Introduction to Database Recovery

 

Protocols: 

Recovery Concepts, NO

-

UNDO/REDO 

recovery based on Deferred update, Recovery techniques based on immediate update, Shadow 

paging, Database backup and recovery from catastr

ophic failures

 

 

Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.

 

 

The concept of 

transaction 

provides a mechanism

 

for describing logical units of database 

processing.

 

Transaction processing systems 

are systems with large databases and hundreds 

of

 

concurrent users executing database transactions. Examples of such systems

 

include airline 

reservations, banking, credit card processing, online retail purchasing,

 

stock markets, 

supermarket checkouts, and many other applications. 

 

 

5

.1 Introduction to 

Transaction Processing

 

 

5

.1.1 Single

-

User versus Multiuser Systems

 

A DBMS is 

single

-

user 

if at most one user at

 

a time can use the system, and it is 

multiuser 

if 

many users can use the system

—

 

and hence access the database

—

concurrently. Single

-

user 

DBMSs a

re mostly

 

restricted to personal computer systems; most other DBMSs are multiuser. 

 

 

Multiple users can access databases

—

and use computer systems

—

simultaneously

 

because of the 

concept of 

multiprogramming

, which allows the operating system of

 

the computer t

o execute 

multiple programs

—

or 

processes

—

at the same time. A single

 

central processing unit (CPU) can 

only execute at most one process at a time. However,

 

multiprogramming operating systems 

execute some commands from one process,

 

then suspend that process 

and execute some 

commands from the next process,

 

and so on. If the computer system has multiple hardware 

processors (CPUs), 

parallel processing

 

of multiple processes is possible, as illustrated by 

processes C and D in Figure 

5

.1.

 

 

 

 

Figure 5.1: 

Interleave

d processing versus parallel processing of concurrent

 

transactions.

 

 

 

