DBMS V Sem CSE

MODULE-1
Introduction to Databases: Introduction, Characteristics of database approach, Advantages of using the DBMS approach, History of database applications. Overview of Database Languages and Architectures: Data Models, Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces. The Database System environment. Conceptual Data Modeling using Entities and Relationships: Entity types, Entity sets, attributes, roles, and structural constraints, Weak entity types, ER diagrams, examples, Specialization and Generalization.
UNIT 1: INTRODUCTION TO DATABASES
1.1 INTRODUCTION
Basic Definitions
· Database: A collection of related data.
· Data: Known facts that can be recorded and have an implicit meaning.
A database has the following implicit properties:
· A database represents some aspect of the real world, sometimes called the miniworld or the universe of discourse (UoD). Changes to the miniworld are reflected in the database.
· A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot correctly be referred to as a database.
· A database is designed, built, and populated with data for a specific purpose. It has an intended group of users and some preconceived applications in which these users are interested.
A database management system (DBMS) is a computerized system that enables users to create and maintain a database. The DBMS is a general-purpose software system that facilitates the processes of defining, constructing, manipulating, and sharing databases among various users and applications.
· Defining a database involves specifying the data types, structures, and constraints of the data to be stored in the database. The database definition or descriptive information is also stored by the DBMS in the form of a database catalog or dictionary; it is called meta-data.
· Constructing the database is the process of storing the data on some storage medium that is controlled by the DBMS.
· Manipulating a database includes functions such as querying the database to retrieve specific data, updating the database to reflect changes in the miniworld, and generating reports from the data.
· Sharing a database allows multiple users and programs to access the database simultaneously.
An application program accesses the database by sending queries or requests for data to the DBMS. A query typically causes some data to be retrieved; a transaction may cause some data to be read and some data to be written into the database.
Other important functions provided by the DBMS include protecting the database and maintaining it over a long period of time. Protection includes system protection against hardware or software malfunction (or crashes) and security protection against unauthorized or malicious access. A typical large database may have a life cycle of many years, so the DBMS must be able to maintain the database system by allowing the system to evolve as requirements change over time.
To complete our initial definitions, we will call the database and DBMS software together a database system. Figure 1.1 illustrates A simplified database system environment.
[image:]
Let us consider a simple example that most readers may be familiar with: a UNIVERSITY database for maintaining information concerning students, courses, and grades in a university environment. Figure 1.2 shows the database structure and a few sample data records. The database is organized as five files, each of which stores data records of the same type. The STUDENT file stores data on each student, the COURSE file stores data on each course, the SECTION file stores data on each section of a course, the GRADE_REPORT file stores the grades that students receive in the various sections they have completed, and the PREREQUISITE file stores the prerequisites of each course.
To define this database, we must specify the structure of the records of each file by specifying the different types of data elements to be stored in each record. In Figure 1.2, each STUDENT record includes data to represent the student’s Name, Student_number, Class (such as freshman or ‘1’, sophomore or ‘2’, and so forth), and Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each COURSE record includes data to represent the Course_name, Course_number, Credit_hours, and Department (the department that offers the course), and so on. We must also specify a data type for each data element within a record.
[image:]
[image:]
For example, we can specify that Name of STUDENT is a string of alphabetic characters, Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a single character from the set {‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’}. To construct the UNIVERSITY database, we store data to represent each student, course, section, grade report, and prerequisite as a record in the appropriate file. Notice that records in the various files may be related. For example, the record for Smith in the STUDENT file is related to two records in the GRADE_REPORT file that specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE file relates two course records: one representing the course and the other representing the prerequisite. Most medium-size and large databases include many types of records and have many relationships among the records.
Database manipulation involves querying and updating. Examples of queries are as follows:
· Retrieve the transcript—a list of all courses and grades—of ‘Smith’
· List the names of students who took the section of the ‘Database’ course offered in fall 2008 and their grades in that section
· List the prerequisites of the ‘Database’ course

Examples of updates include the following:
· Change the class of ‘Smith’ to sophomore
· Create a new section for the ‘Database’ course for this semester
· Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

These informal queries and updates must be specified precisely in the query language of the DBMS before they can be processed.

Design of a new application for an existing database or design of a brand new database starts off with a phase called requirements specification and analysis. These requirements are documented in detail and transformed into a conceptual design that can be represented and manipulated using some computerized tools so that it can be easily maintained, modified, and transformed into a database implementation. The design is then translated to a logical design that can be expressed in a data model implemented in a commercial DBMS. The final stage is physical design, during which further specifications are provided for storing and accessing the database. The database design is implemented, populated with actual data, and continuously maintained to reflect the state of the miniworld.

1.2 CHARACTERISTICS OF DATABASE APPROACH

Database approach vs. File Processing approach: Consider an organization/enterprise that is organized as a collection of departments/offices. Each department has certain data processing "needs", many of which are unique to it. In the file processing approach, each department would control a collection of relevant data files and software applications to manipulate that data.

For example, a university's Registrar's Office would maintain data (and programs) relevant to student grades and course enrollments. The Bursar's Office would maintain data (and programs) pertaining to fees owed by students for tuition, room and board, etc. (Most likely, the people in these offices would not be in direct possession of their data and programs, but rather the university's Information Technology Department would be responsible for providing services such as data storage, report generation, and programming.)

One result of this approach is, typically, data redundancy, which not only wastes storage space but also makes it more difficult to keep changing data items consistent with one another, as a change to one copy of a data item must be made to all of them (called duplication-of-effort). Inconsistency results when one (or more) copies of a datum are changed but not others. (E.g., If you change your address, informing the Registrar's Office should suffice to ensure that your grades are sent to the right place, but does not guarantee that your next bill will be, as the copy of your address "owned" by the Bursar's Office might not have been changed.) In the database approach, a single repository of data is maintained that is used by all the departments in the organization. (Note that "single repository" is used in the logical sense. In physical terms, the data may be distributed among various sites, and possibly mirrored.)

The main characteristics of the database approach versus the file-processing approach are the following:
· Self-describing nature of a database system
· Insulation between programs and data, and data abstraction
· Support of multiple views of the data
· Sharing of data and multiuser transaction processing

Self-Describing Nature of a Database System: A database system includes —in addition to the data stored that is of relevance to the organization— a complete definition/description of the database's structure and constraints. This meta-data (i.e., data about data) is stored in the so-called system catalog, which contains a description of the structure of each file, the type and storage format of each field, and the various constraints on the data (i.e., conditions that the data must satisfy). The catalog is used by the DBMS software and also by database users who need information about the database structure. A general-purpose DBMS software package is not written for a specific database application. Therefore, it must refer to the catalog to know the structure of the files in a specific database, such as the type and format of data it will access. The DBMS software must work equally well with any number of database applications—for example, a university database, a banking database, or a company database—as long as the database definition is stored in the catalog.

For the example shown in Figure 1.2, the DBMS catalog will store the definitions of all the files shown. Figure 1.3 shows some entries in a database catalog. Whenever a request is made to access, say, the Name of a STUDENT record, the DBMS software refers to the catalog to determine the structure of the STUDENT file and the position and size of the Name data item within a STUDENT record. By contrast, in a typical file-processing application, the file structure and, in the extreme case, the exact location of Name within a STUDENT record is already coded within each program that accesses this data item.
[image:]

Insulation between Programs and Data, and Data Abstraction: In traditional file processing, the structure of data files is embedded in the application programs, so any changes to the structure of a file may require changing all programs that access that file. By contrast, DBMS access programs do not require such changes in most cases. The structure of data files is stored in the DBMS catalog separately from the access programs. We call this property program-data independence.

For example, a file access program may be written in such a way that it can access only STUDENT records of the structure shown in Figure 1.4. If we want to add another piece of data to each STUDENT record, say the Birth_date, such a program will no longer work and must be changed. By contrast, in a DBMS environment, we only need to change the description of STUDENT records in the catalog (Figure 1.3) to reflect the inclusion of the new data item Birth_date; no programs are changed. The next time a DBMS program refers to the catalog, the new structure of STUDENT records will be accessed and used. User application programs can operate on the data by invoking these operations through their names and arguments, regardless of how the operations are implemented. This may be termed program-operation independence.

The characteristic that allows program-data independence and program-operation independence is called data abstraction. A DBMS provides users with a conceptual representation of data that does not include many of the details of how the data is stored or how the operations are implemented. Informally, a data model is a type of data abstraction that is used to provide this conceptual representation. The data model uses logical concepts, such as objects, their properties, and their interrelationships, that may be easier for most users to understand than computer storage concepts. Hence, the data model hides storage and implementation details that are not of interest to most database users.
[image:]

Support of Multiple Views of the Data: A database typically has many types of users, each of whom may require a different perspective or view of the database. A view may be a subset of the database or it may contain virtual data that is derived from the database files but is not explicitly stored. Some users may not need to be aware of whether the data they refer to is stored or derived. A multiuser DBMS whose users have a variety of distinct applications must provide facilities for defining multiple views. For example, one user of the database of Figure 1.2 may be interested only in accessing and printing the transcript of each student; the view for this user is shown in Figure 1.5(a). A second user, who is interested only in checking that students have taken all the prerequisites of each course for which the student registers, may require the view shown in Figure 1.5(b).

[image:]

Sharing of Data and Multiuser Transaction Processing: A multiuser DBMS, as its name implies, must allow multiple users to access the database at the same time. This is essential if data for multiple applications is to be integrated and maintained in a single database. The DBMS must include concurrency control software to ensure that several users trying to update the same data do so in a controlled manner so that the result of the updates is correct. For example, when several reservation agents try to assign a seat on an airline flight, the DBMS should ensure that each seat can be accessed by only one agent at a time for assignment to a passenger. These types of applications are generally called online transaction processing (OLTP) applications. A fundamental role of multiuser DBMS software is to ensure that concurrent transactions operate correctly and efficiently.

The concept of a transaction has become central to many database applications. A transaction is an executing program or process that includes one or more database accesses, such as reading or updating of database records. The isolation property ensures that each transaction appears to execute in isolation from other transactions, even though hundreds of transactions may be executing concurrently. The atomicity property ensures that either all the database operations in a transaction are executed or none are.

1.3 ADVANTAGES OF USING THE DBMS APPROACH
1. Controlling Redundancy: Data redundancy leads to wasted storage space, duplication of effort (when multiple copies of a datum need to be updated), and a higher liklihood of the introduction of inconsistency. On the other hand, redundancy can be used to improve performance of queries. Indexes, for example, are entirely redundant, but help the DBMS in processing queries more quickly. Another example of using redundancy to improve performance is to store an "extra" field in order to avoid the need to access other tables (as when doing a JOIN, for example). See Figure 1.6 (page 18): the StudentName and CourseNumber fields need not be there. A DBMS should provide the capability to automatically enforce the rule that no inconsistencies are introduced when data is updated. (Figure 1.6 again, in which Student_name does not match Student_number.)
[image:]
2. Restricting Unauthorized Access: A DBMS should provide a security and authorization subsystem, which is used for specifying restrictions on user accounts. Common kinds of restrictions are to allow read-only access (no updating), or access only to a subset of the data.

3. Providing Persistent Storage for Program Objects: Object-oriented database systems make it easier for complex runtime objects (e.g., lists, trees) to be saved in secondary storage so as to survive beyond program termination and to be retrievable at a later time.

4. Providing Storage Structures for Efficient Query Processing: The DBMS maintains indexes (typically in the form of trees and/or hash tables) that are utilized to improve the execution time of queries and updates. (The choice of which indexes to create and maintain is part of physical database design and tuning and is the responsibility of the DBA. The query processing and optimization module is responsible for choosing an efficient query execution plan for each query submitted to the system.

5. Providing Backup and Recovery: The subsystem having this responsibility ensures that recovery is possible in the case of a system crash during execution of one or more transactions.

6. Providing Multiple User Interfaces: For example, query languages for casual users, programming language interfaces for application programmers, forms and/or command codes for parametric users, menu-driven interfaces for stand-alone users.

7. Representing Complex Relationships Among Data: A DBMS should have the capability to represent such relationships and to retrieve related data quickly.

8. Enforcing Integrity Constraints: Most database applications are such that the semantics (i.e., meaning) of the data require that it satisfy certain restrictions in order to make sense. Perhaps the most fundamental constraint on a data item is its data type, which specifies the universe of values from which its value may be drawn. (E.g., a Grade field could be defined to be of type Grade_Type, which, say, we have defined as including precisely the values in the set { "A", "A-", "B+", ..., "F" }.

9. Permitting Inferencing and Actions Via Rules: In a deductive database system, one may specify declarative rules that allow the database to infer new data! E.g., Figure out which students are on academic probation. Such capabilities would take the place of application programs that would be used to ascertain such information otherwise. Active database systems go one step further by allowing "active rules" that can be used to initiate actions automatically.

Additional Implications of Using the Database Approach

1. Potential for Enforcing Standards. The database approach permits the DBA to define and enforce standards among database users in a large organization. This facilitates communication and cooperation among various departments, projects, and users within the organization. Standards can be defined for names and formats of data elements, display formats, report structures, terminology, and so on.

2. Reduced Application Development Time. Designing and implementing a large multiuser database from scratch may take more time than writing a single specialized file application. However, once a database is up and running, substantially less time is generally required to create new applications using DBMS facilities.

3. Flexibility. It may be necessary to change the structure of a database as requirements change. For example, it may be necessary to add a file to the database or to extend the data elements in an existing file. Modern DBMSs allow certain types of evolutionary changes to the structure of the database without affecting the stored data and the existing application programs.
4. Availability of Up-to-Date Information. A DBMS makes the database available to all users. As soon as one user’s update is applied to the database, all other users can immediately see this update. This availability of up-to-date information is essential for many transaction-processing applications, such as reservation systems or banking databases, and it is made possible by the concurrency control and recovery subsystems of a DBMS.

5. Economies of Scale. The DBMS approach permits consolidation of data and applications, thus reducing the amount of wasteful overlap between activities of data-processing personnel in different projects or departments as well as redundancies among applications. This enables the whole organization to invest in more powerful processors, storage devices, or networking gear, rather than having each department purchase its own (lower performance) equipment. This reduces overall costs of operation and management.

1.4 HISTORY OF DATABASE APPLICATIONS
1. Early Database Applications Using Hierarchical and Network Systems: Many early database applications maintained records in large organizations such as corporations, universities, hospitals, and banks. In many of these applications, there were large numbers of records of similar structure. For example, in a university application, similar information would be kept for each student, each course, each grade record, and so on. There were also many types of records and many interrelationships among them.

One of the main problems with early database systems was the intermixing of conceptual relationships with the physical storage and placement of records on disk. Hence, these systems did not provide sufficient data abstraction and program-data independence capabilities. For example, the grade records of a particular student could be physically stored next to the student record. Although this provided very designed to handle, it did not provide enough flexibility to access records efficiently when new queries and transactions were identified. In particular, new queries that required a different storage organization for efficient processing were quite difficult to implement efficiently. It was also laborious to reorganize the database when changes were made to the application’s requirements.

2. Providing Data Abstraction and Application Flexibility with Relational Databases: Relational databases were originally proposed to separate the physical storage of data from its conceptual representation and to provide a mathematical foundation for data representation and querying. The relational data model also introduced high-level query languages that provided an alternative to programming language interfaces, making it much faster to write new queries. Relational representation of data somewhat resembles the example we presented in Figure 1.2. Relational systems were initially targeted to the same applications as earlier systems, and provided flexibility to develop new queries quickly and to reorganize the database as requirements changed. Hence, data abstraction and program-data independence were much improved when compared to earlier systems.

3. Object-Oriented Applications and the Need for More Complex Databases: The emergence of object-oriented programming languages in the 1980s and the need to store and share complex, structured objects led to the development of object-oriented databases (OODBs). Initially, OODBs were considered a competitor incorporated many of the useful object-oriented paradigms, such as abstract data types, encapsulation of operations, inheritance, and object identity. However, the complexity of the model and the lack of an early standard contributed to their limited use. In addition, many object-oriented concepts were incorporated into the newer versions of relational DBMSs, leading to object-relational database management systems, known as ORDBMSs.

4. Interchanging Data on the Web for E-Commerce Using XML: The World Wide Web provides a large network of interconnected computers. Users can create static Web pages using a Web publishing language, such as Hyper-Text Markup Language (HTML), and store these documents on Web servers where other users (clients) can access them and view them through Web browsers. Documents can be linked through hyperlinks, which are pointers to other documents.

5. Extending Database Capabilities for New Applications: The success of database systems in traditional applications encouraged developers of other types of applications to attempt to use them. Such applications traditionally used their own specialized software and file and data structures.
Database systems now offer extensions to better support the specialized requirements for some of these applications. The following are some examples of these applications:
· Scientific applications that store large amounts of data resulting from scientific experiments in areas such as high-energy physics, the mapping of the human genome, and the discovery of protein structures
· Storage and retrieval of images, including scanned news or personal photographs, satellite photographic images, and images from medical procedures such as x-rays and MRI (magnetic resonance imaging) tests
· Storage and retrieval of videos, such as movies, and video clips from news or personal digital cameras
· Data mining applications that analyze large amounts of data to search for the occurrences of specific patterns or relationships, and for identifying unusual patterns in areas such as credit card fraud detection
· Spatial applications that store and analyze spatial locations of data, such as weather information, maps used in geographical information systems, and automobile navigational systems
· Time series applications that store information such as economic data at regular points in time, such as daily sales and monthly gross national product figures

It was quickly apparent that basic relational systems were not very suitable for many of these applications, usually for one or more of the following reasons:
· More complex data structures were needed for modeling the application than the simple relational representation.
· New data types were needed in addition to the basic numeric and character string types.
· New operations and query language constructs were necessary to manipulate the new data types.
· New storage and indexing structures were needed for efficient searching on the new data types.

6. Emergence of Big Data Storage Systems and NOSQL Databases: The proliferation of applications and platforms such as social media Web sites, large e-commerce companies, Web search indexes, and cloud storage/backup led to a surge in the amount of data stored on large databases and massive servers. New types of database systems were necessary to manage these huge databases—systems that would provide fast search and retrieval as well as reliable and safe storage of nontraditional types of data, such as social media posts and tweets. Some of the requirements of these new systems were not compatible with SQL relational DBMSs (SQL is the standard data model and language for relational databases). The term NOSQL is generally interpreted as Not Only SQL, meaning that in systems than manage large amounts of data, some of the data is stored using SQL systems, whereas other data would be stored using NOSQL, depending on the application requirements.

UNIT 2: OVERVIEW OF DATABASE LANGUAGES AND ARCHITECTURES
2.1 Data Models, Schemas, and Instances.
One fundamental characteristic of the database approach is that it provides some level of data abstraction by hiding details of data storage that are irrelevant to database users.
A data model ---a collection of concepts that can be used to describe the conceptual/logical structure of a database--- provides the necessary means to achieve this abstraction. By structure is meant the data types, relationships, and constraints that should hold for the data.
Most data models also include a set of basic operations for specifying retrievals/updates. Object-oriented data models include the idea of objects having behavior (i.e., applicable methods) being stored in the database (as opposed to purely "passive" data). According to C.J. Date (one of the leading database experts), a data model is an abstract, self-contained, logical definition of the objects, operators, and so forth, that together constitute the abstract machine with which users interact. The objects allow us to model the structure of data; the operators allow us to model its behavior.
2.1.1 Categories of Data Models
1. High-level/conceptual: Provides a view close to the way users would perceive data; uses concepts such as
a. Entity: real-world object or concept (e.g., student, employee, course, department, event)
b. Attribute: some property of interest describing an entity (e.g., height, age, color)
c. Relationship: an interaction among entities (e.g., works-on relationship between an employee and a project)

2. Representational/Implementational: Representational or implementation data models are the models used most frequently in traditional commercial DBMSs. These include the widely used relational data model, as well as the so-called legacy data models—the network and hierarchical models—that have been widely used in the past. Representational data models represent data by using record structures and hence are sometimes called record-based data models.

3. Low level/physical: gives details as to how data is stored in computer system, such as record formats, orderings of records, access paths (indexes). Physical data models describe how data is stored as files in the computer by representing information such as record formats, record orderings, and access paths.

2.1.2 Schemas, Instances, and Database State
The description of the database and the database itself is called the database schema, which is specified during database design and is not expected to change frequently. A displayed schema is called a schema diagram. Figure 2.1 shows a schema diagram for the database shown in Figure 1.2 the diagram displays the structure of each record type but not the actual instances of records. We call each object in the schema—such as STUDENT or COURSE—a schema construct.

[image:]
A schema diagram displays only some aspects of a schema, such as the names of record types and data items, and some types of constraints. Other aspects are not specified in the schema diagram; for example, Figure 2.1 shows neither the data type of each data item or the relationships among the various files. The actual data in a database may change quite frequently. For example, the database shown in Figure 1.2 changes every time we add a new student or enters a new grade. The data in the database at a particular moment in time is called a database state or snapshot. It is also called the current set of occurrences or instances in the database.

The DBMS is partly responsible for ensuring that every state of the database is a valid state—that is, a state that satisfies the structure and constraints specified in the schema. Hence, specifying a correct schema to the DBMS is extremely important and the schema must be designed with utmost care. The DBMS stores the descriptions of the schema constructs and constraints—also called the meta-data—in the DBMS catalog.

2.2 Three-Schema Architecture and Data Independence

Three of the four important characteristics of the database approach,
1. Use of a catalog to store the database description (schema) so as to make it self-describing,
2. Insulation of programs and data (program-data and program-operation independence), and
3. Support of multiple user views.

In this section we specify an architecture for database systems, called the three-schema architecture, that was proposed to help achieve and visualize these characteristics. Then we discuss further the concept of data independence.

2.2.1 The Three-Schema Architecture

The goal of the three-schema architecture, illustrated in Figure 2.2, is to separate the user applications from the physical database. In this architecture, schemas can be defined at the following three levels:
1. The internal level has an internal schema, which describes the physical storage structure of the database. The internal schema uses a physical data model and describes the complete details of data storage and access paths for the database.

[image:]
2. The conceptual level has a conceptual schema, which describes the structure of the whole database for a community of users. The conceptual schema hides the details of physical storage structures and concentrates on describing entities, data types, relationships, user operations, and constraints. Usually, a representational data model is used to describe the conceptual schema when a database system is implemented. This implementation conceptual schema is often based on a conceptual schema design in a high-level data model.

3. The external or view level includes a number of external schemas or user views. Each external schema describes the part of the database that a particular user group is interested in and hides the rest of the database from that user group. As in the previous level, each external schema is typically implemented using a representational data model, possibly based on an external schema design in a high-level conceptual data model.
The three schemas are only descriptions of data; the actual data is stored at the physical level only. In the three-schema architecture, each user group refers to its own external schema. Hence, the DBMS must transform a request specified on an external schema into a request against the conceptual schema, and then into a request on the internal schema for processing over the stored database. If the request is database retrieval, the data extracted from the stored database must be reformatted to match the user’s external view. The processes of transforming requests and results between levels are called mappings. These mappings may be time-consuming, so some DBMSs—especially those that are meant to support small databases—do not support external views.

2.3 Data Independence
The three-schema architecture can be used to further explain the concept of data independence, which can be defined as the capacity to change the schema at one level of a database system without having to change the schema at the next higher level. We can define two types of data independence:

1. Logical data independence is the capacity to change the conceptual schema without having to change external schemas or application programs. We may change the conceptual schema to expand the database (by adding a record type or data item), to change constraints, or to reduce the database (by removing a record type or data item). For example, the external schema of Figure 1.5(a) should not be affected by changing the GRADE_REPORT file (or record type) shown in Figure 1.2 into the one shown in Figure 1.6(a). Only the view definition and the mappings need to be changed in a DBMS that supports logical data independence. Changes to constraints can be applied to the conceptual schema without affecting the external schemas or application programs.

2. Physical data independence is the capacity to change the internal schema without having to change the conceptual schema. Changes to the internal schema may be needed because some physical files were reorganized—for example, by creating additional access structures—to improve the performance of retrieval or update. If the same data as before remains in the database, we should not have to change the conceptual schema. For example, providing an access path to improve retrieval speed of SECTION records (Figure 1.2) by semester and year should not require a query such as list all sections offered in fall 2008 to be changed, although the query would be executed more efficiently by the DBMS by utilizing the new access path.

Generally, physical data independence exists in most databases and file environments where physical details, such as the exact location of data on disk, and hardware details of storage encoding, placement, compression, splitting, merging of records, and so on are hidden from the user. Applications remain unaware of these details. On the other hand, logical data independence is harder to achieve because it allows structural and constraint changes without affecting application programs—a much stricter requirement.

2.4 DATABASE LANGUAGES AND INTERFACES
2.4.1 DBMS Languages

1. Data definition language (DDL): The DBMS will have a DDL compiler whose function is to process DDL statements in order to identify descriptions of the schema constructs and to store the schema description in the DBMS catalog. The DDL is used to specify the conceptual schema only.

2. Storage definition language (SDL), is used to specify the internal schema. In most relational DBMSs today, there is no specific language that performs the role of SDL. Instead, the internal schema is specified by a combination of functions, parameters, and specifications related to storage of files. These permit the DBA staff to control indexing choices and mapping of data to storage.

3. View definition language (VDL), to specify user views and their mappings to the conceptual schema, but in most DBMSs the DDL is used to define both conceptual and external schemas. In relational DBMSs, SQL is used in the role of VDL to define user or application views as results of predefined queries.

4. Once the database schemas are compiled and the database is populated with data, users must have some means to manipulate the database. Typical manipulations include retrieval, insertion, deletion, and modification of the data. The DBMS provides a set of operations or a language called the data manipulation language (DML) for these purposes.

5. A high-level or nonprocedural DML can be used on its own to specify complex database operations concisely. Many DBMSs allow high-level DML statements either to be entered interactively from a display monitor or terminal or to be embedded in a general-purpose programming language.

6. A lowlevel or procedural DML must be embedded in a general-purpose programming language. This type of DML typically retrieves individual records or objects from the database and processes each separately. Therefore, it needs to use programming language constructs, such as looping, to retrieve and process each record from a set of records. Low-level DMLs are also called record-at-a-time DMLs because of this property. High-level DMLs, such as SQL, can specify and retrieve many records in a single DML statement; therefore, they are called set-at-a-time or set-oriented DMLs. A query in a high-level DML often specifies which data to retrieve rather than how to retrieve it; therefore, such languages are also called declarative.

7. Whenever DML commands, whether high level or low level, are embedded in a general-purpose programming language, that language is called the host language and the DML is called the data sublanguage. On the other hand, a high-level DML used in a standalone interactive manner is called a query language. In general, both retrieval and update commands of a high-level DML may be used interactively and are hence considered part of the query language.

2.4.2 DBMS Interfaces

User-friendly interfaces provided by a DBMS may include the following:

1. Menu-based Interfaces for Web Clients or Browsing. These interfaces present the user with lists of options (called menus) that lead the user through the formulation of a request. Menus do away with the need to memorize the specific commands and syntax of a query language; rather, the query is composed step-bystep by picking options from a menu that is displayed by the system. Pull-down menus are a very popular technique in Web-based user interfaces. They are also often used in browsing interfaces, which allow a user to look through the contents of a database in an exploratory and unstructured manner.

2. Apps for Mobile Devices. These interfaces present mobile users with access to their data. For example, banking, reservations, and insurance companies, among many others, provide apps that allow users to access their data through a mobile phone or mobile device. The apps have built-in programmed interfaces that typically allow users to login using their account name and password; the apps then provide a limited menu of options for mobile access to the user data, as well as options such as paying bills (for banks) or making reservations (for reservation Web sites).

3. Forms-based Interfaces. A forms-based interface displays a form to each user. Users can fill out all of the form entries to insert new data, or they can fill out only certain entries, in which case the DBMS will retrieve matching data for the remaining entries.

4. Graphical User Interfaces. A GUI typically displays a schema to the user in diagrammatic form. The user then can specify a query by manipulating the diagram. In many cases, GUIs utilize both menus and forms.

5. Natural Language Interfaces. These interfaces accept requests written in English or some other language and attempt to understand them. A natural language interface usually has its own schema, which is similar to the database conceptual schema, as well as a dictionary of important words.

6. Keyword-based Database Search. These are somewhat similar to Web search engines, which accept strings of natural language (like English or Spanish) words and match them with documents at specific sites (for local search engines) or Web pages on the Web at large (for engines like Google or Ask). They use predefined indexes on words and use ranking functions to retrieve and present resulting documents in a decreasing degree of match. Such “free form” textual query interfaces are not yet common in structured relational databases, although a research area called keyword-based querying has emerged recently for relational databases.

7. Speech Input and Output. Limited use of speech as an input query and speech as an answer to a question or result of a request is becoming commonplace. Applications with limited vocabularies, such as inquiries for telephone directory, flight arrival/departure, and credit card account information, are allowing speech for input and output to enable customers to access this information. The speech input is detected using a library of predefined words and used to set up the parameters that are supplied to the queries. For output, a similar conversion from text or numbers into speech takes place.

8. Interfaces for Parametric Users. Parametric users, such as bank tellers, often have a small set of operations that they must perform repeatedly. For example, a teller is able to use single function keys to invoke routine and repetitive transactions such as account deposits or withdrawals, or balance inquiries.

9. Interfaces for the DBA. Most database systems contain privileged commands that can be used only by the DBA staff. These include commands for creating accounts, setting system parameters, granting account authorization, changing a schema, and reorganizing the storage structures of a database.

2.5 The Database System Environment
2.5.1 DBMS Component Modules

Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The figure is divided into two parts. The top part of the figure refers to the various users of the database environment and their interfaces. The lower part shows the internal modules of the DBMS responsible for storage of data and processing of transactions.

1. The database and the DBMS catalog are usually stored on disk. Access to the disk is controlled by the operating system (OS), which schedules disk input/output.
2. A higher-level stored data manager module of the DBMS controls access to DBMS information that is stored on disk.
3. The dotted lines and circles marked illustrate accesses that are under the control of this stored data manager. The stored data manager may use basic os services for carrying out lowlevel data transfer between the disk and computer main storage.
4. The DDL compiler processes schema definitions, specified in the DOL, and stores descriptions of the schemas (meta-data) in the DBMS catalog.
5. The catalog includes information such as the names and sizes of files, names and data types of data items, storage details of each file, mapping information among schemas, and constraints,
6. The runtime database processor handles database accesses at runtime; it receives retrieval or update operations and carries them out on the database. Access to disk goes through the stored data manager, and the buffer manager keeps track of the database pages in memory.
7. The query compiler handles high-level queries that are entered interactively. It parses, analyzes, and compiles or interprets a query by creating database access code, and then generates calls to the runtime processor for executing the code.
8. The precompiler extracts DML commands from an application program written in a host programming language. These commands are sent to the DML compiler for compilation into object code for database access.
9. The rest of the program is sent to the host language compiler. The object codes for the DML commands and the rest of the program are linked, forming a canned transaction whose executable code includes calls to the runtime database processor.
[image:]
2.5.2 Database System Utilities

In addition to possessing the software modules just described, most DBMSs have database utilities that help the DBA manage the database system. Common utilities have the following types of functions:

1. Loading. A loading utility is used to load existing data files—such as text files or sequential files—into the database. Usually, the current (source) format of the data file and the desired (target) database file structure are specified to the utility, which then automatically reformats the data and stores it in the database.
2. Backup. A backup utility creates a backup copy of the database, usually by dumping the entire database onto tape or other mass storage medium.
3. Database storage reorganization. This utility can be used to reorganize a set of database files into different file organizations and create new access paths to improve performance.
4. Performance monitoring. Such a utility monitors database usage and provides statistics to the DBA. The DBA uses the statistics in making decisions such as whether or not to reorganize files or whether to add or drop indexes to improve performance.

2.5.3 Tools, Application Environments, and Communications Facilities

1. CASE tools are used in the design phase of database systems. Another tool that can be quite useful in large organizations is an expanded data dictionary (or data repository) system. In addition to storing catalog information about schemas and constraints, the data dictionary stores other information, such as design decisions, usage standards, application program descriptions, and user information. Such a system is also called an information repository. This information can be accessed directly by users or the DBA when needed.

2. Application development environments, systems provide an environment for developing database applications and include facilities that help in many facets of database systems, including database design, GUI development, querying and updating, and application program development.

3. The DBMS also needs to interface with communications software, whose function is to allow users at locations remote from the database system site to access the database through computer terminals, workstations, or personal computers. These are connected to the database site through data communications hardware such as Internet routers, phone lines, long-haul networks, local networks, or satellite communication devices

UNIT 3 : DATA MODELING USING ENTITIES AND RELATIONSHIPS

3.1 Entity Types, Entity Sets, Attributes, and Keys

3.1.1 Entities and Attributes

Entities and Their Attributes. The basic concept that the ER model represents is an entity, which is a thing or object in the real world with an independent existence. An entity may be an object with a physical existence (for example, a particular person, car, house, or employee) or it may be an object with a conceptual existence (for instance, a company, a job, or a university course). Each entity has attributes—the particular properties that describe it. For example, an EMPLOYEE entity may be described by the employee’s name, age, address, salary, and job. A particular entity will have a value for each of its attributes. The attribute values that describe each entity become a major part of the data stored in the database.

Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE entity e1 has four attributes: Name, Address, Age, and Home_phone; their values are ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’, respectively. The COMPANY entity c1 has three attributes: Name, Headquarters, and President; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.
[image:]

Several types of attributes occur in the ER model:
· Simple versus composite,
· Singlevalued versus multivalued, and
· Stored versus derived.

1. Composite versus Simple (Atomic) Attributes. Composite attributes can be divided into smaller subparts, which represent more basic attributes with independent meanings. For example, the Address attribute of the EMPLOYEE entity shown in Figure 3.3 can be subdivided into Street_address, City, State, and Zip, as shown in Figure 3.4. Attributes that are not divisible are called simple or atomic attributes.

[image:]

2. Single-Valued versus Multivalued Attributes. Most attributes have a single value for a particular entity; such attributes are called single-valued. For example, Age is a single-valued attribute of a person. One person may not have any college degrees, another person may have one, and a third person may have two or more degrees; therefore, different people can have different numbers of values for the College_degrees attribute. Such attributes are called multivalued.

3. Stored versus Derived Attributes. In some cases, two (or more) attribute values are related—for example, the Age and Birth_date attributes of a person. For a particular person entity, the value of Age can be determined from the current (today’s) date and the value of that person’s Birth_date. The Age attribute is hence called a derived attribute and is said to be derivable from the Birth_date attribute, which is called a stored attribute.

4. NULL Values. NULL can also be used if we do not know the value of an attribute for a particular entity—for example, if we do not know the home phone number of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is not applicable, whereas the meaning of the latter is unknown. The unknown category of NULL can be further classified into two cases. The first case arises when it is known that the attribute value exists but is missing—for instance, if the Height attribute of a person is listed as NULL. The second case arises when it is not known whether the attribute value exists—for example, if the Home_phone attribute of a person is NULL.

5. Complex Attributes. Notice that, in general, composite and multivalued attributes can be nested arbitrarily. We can represent arbitrary nesting by grouping components of a composite attribute between parentheses () and separating the components with commas, and by displaying multivalued attributes between braces { }. Such attributes are called complex attributes. For example, if a person can have more than one residence and each residence can have a single address and multiple phones, an attribute Address_phone for a person can be specified as shown in Figure 3.5. Both Phone and Address are themselves composite attributes.
[image:]
3.3.2 Entity Types, Entity Sets, Keys, and Value Sets Entity Types and Entity Sets.

An entity type defines a collection (or set) of entities that have the same attributes. Each entity type in the database is described by its name and attributes. Figure 3.6 shows two entity types: EMPLOYEE and COMPANY, and a list of some of the attributes for each. A few individual entities of each type are also illustrated, along with the values of their attributes.

The collection of all entities of a particular entity type in the database at any point in time is called an entity set or entity collection; the entity set is usually referred to using the same name as the entity type, even though they are two separate concepts. For example, EMPLOYEE refers to both a type of entity as well as the current collection of all employee entities in the database. It is now more common to give separate names to the entity type and entity collection; for example in object and object-relational data models.

[image:]

An entity type is represented in ER diagrams (see Figure 3.2) as a rectangular box enclosing the entity type name. Attribute names are enclosed in ovals and are attached to their entity type by straight lines. Composite attributes are attached to their component attributes by straight lines. Multivalued attributes are displayed in double ovals. Figure 3.7(a) shows a CAR entity type in this notation.
[image:]

An entity type describes the schema or intension for a set of entities that share the same structure. The collection of entities of a particular entity type is grouped into an entity set, which is also called the extension of the entity type.

[image:]

3.3.3 Key Attributes of an Entity Type. An entity type usually has one or more attributes whose values are distinct for each individual entity in the entity set. Such an attribute is called a key attribute, and its values can be used to identify each entity uniquely. For example, the Name attribute is a key of the COMPANY entity type in Figure 3.6 because no two companies are allowed to have the same name. In ER diagrammatic notation, each key attribute has its name underlined inside the oval, as illustrated in Figure 3.7(a).

Specifying that an attribute is a key of an entity type means that the preceding uniqueness property must hold for every entity set of the entity type. Hence, it is a constraint that prohibits any two entities from having the same value for the key attribute at the same time. It is not the property of a particular entity set; rather, it is a constraint on any entity set of the entity type at any point in time. This key constraint (and other constraints we discuss later) is derived from the constraints of the miniworld that the database represents.

Some entity types have more than one key attribute. For example, each of the Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in its own right. The Registration attribute is an example of a composite key formed from two simple component attributes, State and Number, neither of which is a key on its own. An entity type may also have no key, in which case it is called a weak entity type

[image:]

3.3.4 Value Sets (Domains) of Attributes. Each simple attribute of an entity type is associated with a value set (or domain of values), which specifies the set of values that may be assigned to that attribute for each individual entity. In Figure 3.6, if the range of ages allowed for employees is between 16 and 70, we can specify the value set of the Age attribute of EMPLOYEE to be the set of integer numbers between 16 and 70. Value sets are not typically displayed in basic ER diagrams and are similar to the basic data types available in most programming languages, such as integer, string, Boolean, float, enumerated type, subrange, and so on. However, data types of attributes can be specified in UML class diagrams and in other diagrammatic notations used in database design tools. Additional data types to represent common database types, such as date, time, and other concepts, are also employed.
Mathematically, an attribute A of entity set E whose value set is V can be defined as a function from E to the power set6 P(V) of V:
A : E → P(V)

We refer to the value of attribute A for entity e as A(e). The previous definition covers both single-valued and multivalued attributes, as well as NULLs. A NULL value is represented by the empty set. For single-valued attributes, A(e) is restricted to being a singleton set for each entity e in E, whereas there is no restriction on multivalued attributes.7 For a composite attribute A, the value set V is the power set of the Cartesian product of P(V1), P(V2), . . . , P(Vn), where V1, V2, . . . , Vn are the value sets of the simple component attributes that form A:

V = P(P(V1) × P(V2) × . . . × P(Vn))

The value set provides all possible values. Usually only a small number of these values exist in the database at a particular time. Those values represent the data from the current state of the miniworld and correspond to the data as it actually exists in the miniworld.

3.3.5 Initial Conceptual Design of the COMPANY Database

1. An entity type DEPARTMENT with attributes Name, Number, Locations, Manager, and Manager_start_date. Locations is the only multivalued attribute. We can specify that both Name and Number are (separate) key attributes because each was specified to be unique.
2. An entity type PROJECT with attributes Name, Number, Location, and Controlling_department. Both Name and Number are (separate) key attributes.
3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary, Birth_date, Department, and Supervisor. Both Name and Address may be composite attributes; however, this was not specified in the requirements. We must go back to the users to see if any of them will refer to the individual components of Name—First_name, Middle_initial, Last_name—or of Address. In our example, Name is modeled as a composite attribute, whereas Address is not, presumably after consultation with the users.
4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex, Birth_date, and Relationship (to the employee).
[image:]
3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

In Figure 3.8 there are several implicit relationships among the various entity types. In fact, whenever an attribute of one entity type refers to another entity type, some relationship exists. For example, the attribute Manager of DEPARTMENT refers to an employee who manages the department; the attribute Controlling_department of PROJECT refers to the department that controls the project; the attribute Supervisor of EMPLOYEE refers to another employee (the one who supervises this employee); the attribute Department of EMPLOYEE refers to the department for which the employee works; and so on. In the ER model, these references should not be represented as attributes but as relationships.

3.4.1 Relationship Types, Sets, and Instances
A relationship type R among n entity types E1, E2, . . . , En defines a set of associations— or a relationship set—among entities from these entity types. Similar to the case of entity types and entity sets, a relationship type and its corresponding relationship set are customarily referred to by the same name, R. Mathematically, the relationship set R is a set of relationship instances ri, where each ri associates n individual entities (e1, e2, . . . , en), and each entity ej in ri is a member of entity set Ej, 1 ≤ j ≤ n. Hence, a relationship set is a mathematical relation on E1, E2, . . . , En; alternatively, it can be defined as a subset of the Cartesian product of the entity sets E1 × E2 × . . . × En. Each of the entity types E1, E2, . . . , En is said to participate in the relationship type R; similarly, each of the individual entities e1, e2, . . . , en is said to participate in the relationship instance ri = (e1, e2, . . . , en).

For example, consider a relationship type WORKS_FOR between the two entity types EMPLOYEE and DEPARTMENT, which associates each employee with the department for which the employee works. Each relationship instance in the relationship set WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT entity. Figure 3.9 illustrates this example, where each relationship instance ri is shown connected to the EMPLOYEE and DEPARTMENT entities that participate in ri. In the miniworld represented by Figure 3.9, the employees e1, e3, and e6 work for department d1; the employees e2 and e4 work for department d2; and the employees e5 and e7 work for department d3.

[image:]

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are connected by straight lines to the rectangular boxes representing the participating entity types. The relationship name is displayed in the diamond-shaped box (see Figure 3.2).
3.4.2 Relationship Degree, Role Names, and Recursive Relationships

Degree of a Relationship Type. The degree of a relationship type is the number of participating entity types. Hence, the WORKS_FOR relationship is of degree two. A relationship type of degree two is called binary, and one of degree three is called ternary. An example of a ternary relationship is SUPPLY, shown in Figure 3.10, where each relationship instance ri associates three entities—a supplier s, a part p, and a project j—whenever s supplies part p to project j. Relationships can generally be of any degree, but the ones most common are binary relationships. Higher-degree relationships are generally more complex than binary relationships; we characterize them further in Section 3.9.

Relationships as Attributes. It is sometimes convenient to think of a binary relationship type in terms of attributes, as we discussed in Section 3.3.3. Consider the WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called Department of the EMPLOYEE entity type, where the value of Department for each EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which that employee works. Hence, the value set for this Department attribute is the set of all DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did in Figure 3.8 when we specified the initial design of the entity type EMPLOYEE for the COMPANY database. However, when we think of a binary relationship as an attribute, we always have two options or two points of view. In this example, the alternative point of view is to think of a multivalued attribute Employees of the entity type DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE entities who work for that department.

[image:]

Role Names and Recursive Relationships. Each entity type that participates in a relationship type plays a particular role in the relationship. The role name signifies the role that a participating entity from the entity type plays in each relationship instance, and it helps to explain what the relationship means. For example, in the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the participating entity types are distinct, since each participating entity type name can be used as the role name. However, in some cases the same entity type participates more than once in a relationship type in different roles. In such cases the role name becomes essential for distinguishing the meaning of the role that each participating entity plays. Such relationship types are called recursive relationships or self-referencing relationships. Figure 3.11 shows an example. The SUPERVISION relationship type relates an employee to a supervisor, where both employee and supervisor entities are members of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in SUPERVISION: once in the role of supervisor (or boss), and once in the role of supervisee (or subordinate). Each relationship instance ri in SUPERVISION associates two different employee entities ej and ek, one of which plays the role of supervisor and the other the role of supervisee. In Figure 3.11, the lines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent the supervisee role; hence, e1 supervises e2 and e3, e4 supervises e6 and e7, and e5 supervises e1 and e4. In this example, each relationship instance must be connected with two lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

[image:]
3.4.3 Constraints on Binary Relationship Types

For example, in Figure 3.9, if the company has a rule that each employee must work for exactly one department, then we would like to describe this constraint in the schema. We can distinguish two main types of binary relationship constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships. The cardinality ratio for a binary relationship specifies the maximum number of relationship instances that an entity can participate in. For example, in the WORKS_FOR binary relationship type, DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department can be related to (that is, employs) any number of employees (N),9 but an employee can be related to (work for) at most one department (1). This means that for this particular relationship type WORKS_FOR, a particular department entity can be related to any number of employees (N) indicates there is no maximum number). On the other hand, an employee can be related to a maximum of one department.

The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N. An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates a department entity to the employee who manages that department. This represents the miniworld constraints that—at any point in time—an employee can manage at most one department and a department can have at most one manager. The relationship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the miniworld rule is that an employee can work on several projects and a project can have several employees.
[image:]
Cardinality ratios for binary relationships are represented on ER diagrams by displaying 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in this notation, we can either specify no maximum (N) or a maximum of one (1) on participation. An alternative notation (see Section 3.7.4) allows the designer to specify a specific maximum number on participation, such as 4 or 5.

[image:]

Participation Constraints and Existence Dependencies. The participation constraint specifies whether the existence of an entity depends on its being related to another entity via the relationship type. This constraint specifies the minimum number of relationship instances that each entity can participate in and is sometimes called the minimum cardinality constraint.

There are two types of participation constraints—total and partial—that we illustrate by example. If a company policy states that every employee must work for a department, then an employee entity can exist only if it participates in at least one WORKS_FOR relationship instance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR is called total participation, meaning that every entity in the total set of employee entities must be related to a department entity via WORKS_FOR. Total participation is also called existence dependency. In Figure 3.12 we do not expect every employee to manage a department, so the participation of EMPLOYEE in the MANAGES relationship type is partial, meaning that some or part of the set of employee entities are related to some department entity via MANAGES, but not necessarily all. We will refer to the cardinality ratio and participation constraints, taken together, as the structural constraints of a relationship type.

In ER diagrams, total participation (or existence dependency) is displayed as a double line connecting the participating entity type to the relationship, whereas partial participation is represented by a single line (see Figure 3.2). Notice that in this notation, we can either specify no minimum (partial participation) or a minimum of one (total participation). An alternative notation allows the designer to specify a specific minimum number on participation in the relationship, such as 4 or 5.

3.4.4 Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For example, to record the number of hours per week that a particular employee works on a particular project, we can include an attribute Hours for the WORKS_ON relationship type in Figure 3.13. Another example is to include the date on which a manager started managing a department via an attribute Start_date for the MANAGES relationship type in Figure 3.12.

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the participating entity types. For example, the Start_date attribute for the MANAGES relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT, although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1 relationship, so every department or employee entity participates in at most one relationship instance. Hence, the value of the Start_date attribute can be determined separately, either by the participating department entity or by the participating employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the entity type on the N-side of the relationship. For example, in Figure 3.9, if the WORKS_FOR relationship also has an attribute Start_date that indicates when an employee started working for a department, this attribute can be included as an attribute of EMPLOYEE. This is because each employee works for at most one department, and hence participates in at most one relationship instance in WORKS_FOR, but a department can have many employees, each with a different start date.

In both 1:1 and 1:N relationship types, the decision where to place a relationship attribute—as a relationship type attribute or as an attribute of a participating entity type—is determined subjectively by the schema designer.

For M:N (many-to-many) relationship types, some attributes may be determined by the combination of participating entities in a relationship instance, not by any single entity. Such attributes must be specified as relationship attributes. An example is the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the number of hours per week an employee currently works on a project is determined by an employee-project combination and not separately by either entity.

3.2 WEAK ENTITY TYPES

Entity types that do not have key attributes of their own are called weak entity types. In contrast, regular entity types that do have a key attribute—which include all the examples discussed so far—are called strong entity types. Entities belonging to a weak entity type are identified by being related to specific entities from another entity type in combination with one of their attribute values. We call this other entity type the identifying or owner entity type, and we call the relationship type that relates a weak entity type to its owner the identifying relationship of the weak entity type.

A weak entity type always has a total participation constraint (existence dependency) with respect to its identifying relationship because a weak entity cannot be identified without an owner entity. However, not every existence dependency results in a weak entity type.
For example, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity, even though it has its own key (License_number) and hence is not a weak entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of the dependents of each employee via a 1:N relationship (Figure 3.2). In our example, the attributes of DEPENDENT are Name (the first name of the dependent), Birth_date, Sex, and Relationship (to the employee). Two dependents of two distinct employees may, by chance, have the same values for Name, Birth_date, Sex, and Relationship, but they are still distinct entities. They are identified as distinct entities only after determining the particular employee entity to which each dependent is related. Each employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the attribute that can uniquely identify weak entities that are related to the same owner entity.12 In our example, if we assume that no two dependents of the same employee ever have the same first name, the attribute Name of DEPENDENT is the partial key. In the worst case, a composite attribute of all the weak entity’s attributes will be the partial key. In ER diagrams, both a weak entity type and its identifying relationship are distinguished by surrounding their boxes and diamonds with double lines (see Figure 3.2). The partial key attribute is underlined with a dashed or dotted line.

3.3 ER DIAGRAMS
[image:]
3.3.1 ER diagrams for the company schema, with structural constraints specified using (min, max) notation and role names.

[image:]

3.3.2 An ER diagram for a UNIVERSITY database schema.

[image:]

3.3.4 An ER diagram for an AIRLINE database schema.

[image:]

3.3.5 An ER diagram for a BANK database schema.

[image:]

3.4 SPECIALIZATION AND GENERALIZATION

3.4.1 Specialization is the process of defining a set of subclasses of an entity type; this entity type is called the superclass of the specialization. The set of subclasses that forms a specialization is defined on the basis of some distinguishing characteristic of the entities in the superclass. For example, the set of subclasses {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that distinguishes among employee entities based on the job type of each employee.
[image:]
Figure 4.1: Instances of a specialization.
Figure 4.1 shows a few entity instances that belong to subclasses of the {SECRETARY, ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to a subclass represents the same real-world entity as the entity connected to it in the EMPLOYEE superclass, even though the same entity is shown twice; for example, e1 is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests, a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat resembles a 1:1 relationship at the instance level (see Figure 3.12). The main difference is that in a 1:1 relationship two distinct entities are related, whereas in a superclass/ subclass relationship the entity in the subclass is the same real-world entity as the entity in the superclass but is playing a specialized role—for example, an EMPLOYEE specialized in the role of SECRETARY, or an EMPLOYEE specialized in the role of TECHNICIAN.

3.4.2 Generalization

We can think of a reverse process of abstraction in which we suppress the differences among several entity types, identify their common features, and generalize them into a single superclass of which the original entity types are special subclasses. For example, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Because they have several common attributes, they can be generalized into the entity type VEHICLE, as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the generalized superclass VEHICLE. We use the term generalization to refer to the process of defining a generalized entity type from the given entity types.

[image:]
HMSIT,Tumkur	Page 34

image3.emf

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.emf

image24.emf

image25.emf

image26.emf

image27.emf

image28.emf

image29.emf

image30.emf

image1.png

image2.emf

