Module – 4 DBMS

	Normalization: Database Design Theory – Introduction to Normalization using Functional and Multivalued Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth Normal Form, Join Dependencies and Fifth Normal Form.

Normalization Algorithms: Inference Rules, Equivalence, and Minimal Cover, Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Nulls, Dangling tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and Normal Forms
Textbook 1: Ch14.1 to 14.7, 15.1 to 15.6

Database design may be performed using two approaches: bottom-up or top-down. A bottom-up design methodology considers the basic relationships among individual attributes as the starting point and uses those to construct relation schemas. A top-down design methodology (also called design by analysis) starts with a number of groupings of attributes into relations that exist together naturally, for example, on an invoice, a form, or a report.

Relational database design ultimately produces a set of relations. The implicit goals of the design activity are information preservation and minimum redundancy.

4.1 Informal Design Guidelines for Relation Schemas
The four informal guidelines that may be used as measures to determine the quality of relation schema design:
· Making sure that the semantics of the attributes is clear in the schema
· Reducing the redundant information in tuples
· Reducing the NULL values in tuples
· Disallowing the possibility of generating spurious tuples

4.1.1 Imparting Clear Semantics to Attributes in Relations
The semantics of a relation refers to its meaning resulting from the interpretation of attribute values in a tuple.
[image:]
Figure 4.1: A simplified COMPANY relational database schema.
Consider Figure 4.1, a simplified version of the COMPANY relational database schema, which presents an example of populated relation states of this schema. The meaning of the EMPLOYEE relation schema is simple: Each tuple represents an employee, with values for the employee’s name (Ename), Social Security number (Ssn), birth date (Bdate), and address (Address), and the number of the department that the employee works for (Dnumber).

[image:]
Figure 4.2: Sample database state for the relational database schema in Figure 4.1.

Guideline 1: Design a relation schema so that it is easy to explain its meaning. Do not combine attributes from multiple entity types and relationship types into a single relation.

Examples of Violating Guideline 1: The relation schemas in Figures 4.3(a) and 4.3(b) also have clear semantics. A tuple in the EMP_DEPT relation schema in Figure 4.3(a) represents a single employee but includes, along with the Dnumber, additional information—namely, the name (Dname) of the department for which the employee works and the Social Security number (Dmgr_ssn) of the department manager. For the EMP_PROJ relation in Figure 4.3(b), each tuple relates an employee to a project but also includes the employee name (Ename), project name (Pname), and project location (Plocation).

Although there is nothing wrong logically with these two relations, they violate Guideline 1 by mixing attributes from distinct real-world entities: EMP_DEPT mixes attributes of employees and departments, and EMP_PROJ mixes attributes of employees and projects and the WORKS_ON relationship. Hence, they fare poorly against the above measure of design quality.
[image:]

4.1.2 Redundant Information in Tuples and Update Anomalies

The schema design is to minimize the storage space used by the base relations. Grouping attributes into relation schemas has a significant effect on storage space. For example, compare the space used by the two base relations EMPLOYEE and DEPARTMENT in Figure 4.2 with that for an EMP_DEPT base relation in Figure 4.4, which is the result of applying the NATURAL JOIN operation to EMPLOYEE and DEPARTMENT.

Insertion Anomalies: Insertion anomalies can be differentiated into two types, illustrated by the following examples based on the EMP_DEPT relation:
· To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for the department that the employee works for, or NULLs.
· It's difficult to insert a new department that has no employee as yet in the EMP_DEPT relation. The only way to do this is to place null values in the attributes for employee. This causes a problem because SSN is the primary key of EMP_DEPT, and each tuple is supposed to represent an employee entity - not a department entity.

Deletion Anomalies: If we delete from EMP_DEPT an employee tuple that happens to represent the last employee working for a particular department, the information concerning that department is lost inadvertently from the database.

Modification Anomalies: In EMP_DEPT, if we change the value of one of the attributes of a particular department—say, the manager of department 5—we must update the tuples of all employees who work in that department; otherwise, the database will become inconsistent

Guideline 2: Design the base relation schemas so that no insertion, deletion, or modification anomalies are present in the relations. If any anomalies are present, note them clearly and make sure that the programs that update the database will operate correctly.

4.1.3 NULL Values in Tuples
The attributes do not apply to all tuples in the relation, we end up with many NULLs in those tuples. This can waste space at the storage level and may also lead to problems with understanding the meaning of the attributes and with specifying JOIN operations at the logical level. Another problem with NULLs is how to account for them when aggregate operations such as COUNT or SUM are applied. SELECT and JOIN operations involve comparisons; if NULL values are present, the results may become unpredictable.
NULLs can have multiple interpretations, such as the following:
· The attribute does not apply to this tuple. For example, Visa_status may not apply to U.S. students.
· The attribute value for this tuple is unknown. For example, the Date_of_birth may be unknown for an employee.
· The value is known but absent; that is, it has not been recorded yet. For example, the Home_Phone_Number for an employee may exist, but may not be available and recorded yet.

[image:]

Guideline 3: As far as possible, avoid placing attributes in a base relation whose values may frequently be NULL. If NULLs are unavoidable, make sure that they apply in exceptional cases only and do not apply to a majority of tuples in the relation.

Using space efficiently and avoiding joins with NULL values are the two overriding criteria that determine whether to include the columns that may have NULLs in a relation or to have a separate relation for those columns (with the appropriate key columns).

4.1.4 Generation of Spurious Tuples
Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 4.5(a), which can be used instead of the single EMP_PROJ relation in Figure 4.3(b). A tuple in EMP_LOCS means that the employee whose name is Ename works on at least one project located at Plocation. A tuple in EMP_PROJ1 refers to the fact that the employee whose Social Security number is Ssn works the given Hours per week on the project whose name, number, and location are Pname, Pnumber, and Plocation.

Figure 4.5(b) shows relation states of EMP_LOCS and EMP_PROJ1 corresponding to the EMP_PROJ relation in Figure 4.4, which are obtained by applying the appropriate PROJECT (π) operations to EMP_PROJ.

[image:]
Additional tuples that were not in EMP_PROJ are called spurious tuples because they represent spurious information that is not valid. The spurious tuples are marked by asterisks (*) in Figure 4.6. It is left to the reader to complete the result of NATURAL JOIN operation on the EMP_PROJ1 and EMP_LOCS tables in their entirety and to mark the spurious tuples in this result.
[image:]
Guideline 4. Design relation schemas so that they can be joined with equality conditions on attributes that are appropriately related (primary key, foreign key) pairs in a way that guarantees that no spurious tuples are generated. Avoid relations that contain matching attributes that are not (foreign key, primary key) combinations because joining on such attributes may produce spurious tuples.

4.1.5 Summary and Discussion of Design Guideline

The problems we pointed out, which can be detected without additional tools of analysis, are as follows:
· Anomalies that cause redundant work to be done during insertion into and modification of a relation, and that may cause accidental loss of information during a deletion from a relation
· Waste of storage space due to NULLs and the difficulty of performing selections, aggregation operations, and joins due to NULL values
· Generation of invalid and spurious data during joins on base relations with matched attributes that may not represent a proper (foreign key, primary key) relationship

4.2 Functional Dependencies

4.2.1 Definition of Functional Dependency
A functional dependency, denoted by X → Y, between two sets of attributes X and Y that are subsets of R specifies a constraint on the possible tuples that can form a relation state r of R. The constraint is that, for any two tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].

We say that "Y is functionally dependent on X". Also, X is called the left-hand side of the FD. Y is called the right-hand side of the FD.
Thus, X functionally determines Y in a relation schema R if, and only if, whenever two tuples of r(R) agree on their X-value, they must necessarily agree on their Y-value. Note the following:
· If a constraint on R states that there cannot be more than one tuple with a given X-value in any relation instance r(R)—that is, X is a candidate key of R—this implies that X → Y for any subset of attributes Y of R. If X is a candidate key of R, then X → R.
· If X → Y in R, this does not say whether or not Y → X in R.

A functional dependency is a property of the semantics or meaning of the attributes. The database designers will use their understanding of the semantics of the attributes of R—that is, how they relate to one another—to specify the functional dependencies that should hold on all relation states r of R. Relation extensions r(R) that satisfy the functional dependency constraints are called legal relation states of R.

4.3 Normal Forms Based on Primary Keys
The set of functional dependencies is given for each relation, and that each relation has a designated primary key; this information combined with the tests for normal forms drives the normalization process for relational schema design. Most practical relational design projects take one of the following two approaches:
· Perform a conceptual schema design using a conceptual model such as ER or EER and map the conceptual design into a set of relations.
· Design the relations based on external knowledge derived from an existing implementation of files or forms or reports.

4.3.1 Normalization of Relations
The normalization process, takes a relation schema through a series of tests to certify whether it satisfies a certain normal form. The process, which proceeds in a top-down fashion by evaluating each relation against the criteria for normal forms and decomposing relations as necessary, can thus be considered as relational design by analysis.

Normalization of data can be considered a process of analyzing the given relation schemas based on their FDs and primary keys to achieve the desirable properties of
1. Minimizing redundancy and
2. Minimizing the insertion, deletion, and update anomalies.

The normalization procedure provides database designers with the following:
· A formal framework for analyzing relation schemas based on their keys and on the functional dependencies among their attributes.
· A series of normal form tests that can be carried out on individual relation schemas so that the relational database can be normalized to any desired degree

Definition. The normal form of a relation refers to the highest normal form condition that it meets, and hence indicates the degree to which it has been normalized. Normal forms, when considered in isolation from other factors, do not guarantee a good database design. The process of normalization through decomposition must also confirm the existence of additional properties that the relational schemas, taken together, should possess. These would include two properties:
· The nonadditive join or lossless join property, which guarantees that the spurious tuple generation problem does not occur with respect to the relation schemas created after decomposition.
· The dependency preservation property, which ensures that each functional dependency is represented in some individual relation resulting after decomposition
4.3.2 Practical Use of Normal Forms
· Practical design projects in commercial and governmental environment acquire existing designs of databases from previous designs, from designs in legacy models, or from existing files.
· They are certainly interested in assuring that the designs are good quality and sustainable over long periods of time.
· Existing designs are evaluated by applying the tests for normal forms, and normalization is carried out in practice so that the resulting designs are of high quality and meet the desirable properties stated previously.

Definition: Denormalization is the process of storing the join of higher normal form relations as a base relation, which is in a lower normal form.

4.3.3 Definitions of Keys and Attributes Participating in Keys

Definition: A superkey of a relation schema R = {A1, A2, … , An} is a set of attributes S ⊆ R with the property that no two tuples t1 and t2 in any legal relation state r of R will have t1[S] = t2[S]. A key K is a superkey with the additional property that removal of any attribute from K will cause K not to be a superkey anymore.

The difference between a key and a superkey is that a key has to be minimal; that is, if we have a key K = {A1, A2, … , Ak} of R, then K − {Ai} is not a key of R for any Ai, 1 ≤ i ≤ k. In Figure 14.1, {Ssn} is a key for EMPLOYEE, whereas {Ssn}, {Ssn, Ename}, {Ssn, Ename, Bdate}, and any set of attributes that includes Ssn are all superkeys.

If a relation schema has more than one key, each is called a candidate key. One of the candidate keys is arbitrarily designated to be the primary key, and the others are called secondary keys. In a practical relational database, each relation schema must have a primary key. If no candidate key is known for a relation, the entire relation can be treated as a default superkey.

Definition: An attribute of relation schema R is called a prime attribute of R if it is a member of some candidate key of R. An attribute is called nonprime if it is not a prime attribute—that is, if it is not a member of any candidate key. In Figure 4.1, both Ssn and Pnumber are prime attributes of WORKS_ON, whereas other attributes of WORKS_ON are nonprime.

4.3.4 First Normal Form
First normal form is now considered to be part of the formal definition of a relation; historically, it was defined to disallow multivalued attributes, composite attributes, and their combinations. It states that the domains of attributes must include only atomic (simple, indivisible) values and that the value of any attribute in a tuple must be a single value from the domain of that attribute.

Consider the DEPARTMENT relation schema shown in Figure 4.1, whose primary key is Dnumber, and suppose that we extend it by including the Dlocations attribute as shown in Figure 4.9(a). We assume that each department can have a number of locations. The DEPARTMENT schema and a sample relation state are shown in Figure 4.9. As we can see, this is not in 1NF because Dlocations is not an atomic attribute, as illustrated by the first tuple in Figure 4.9(b).

[image:]

There are three main techniques to achieve first normal form for such a relation:
1. Remove the attribute Dlocations that violates 1NF and place it in a separate relation DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT. The primary key of this newly formed relation is the combination {Dnumber, Dlocation}, as shown in Figure 4.2. A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This decomposes the non-1NF relation into two 1NF relations.
2. Expand the key so that there will be a separate tuple in the original DEPARTMENT relation for each location of a DEPARTMENT, as shown in Figure 4.9(c). In this case, the primary key becomes the combination {Dnumber, Dlocation}. This solution has the disadvantage of introducing redundancy in the relation and hence is rarely adopted.
3. If a maximum number of values is known for the attribute—for example, if it is known that at most three locations can exist for a department—replace the Dlocations attribute by three atomic attributes: Dlocation1, Dlocation2, and Dlocation3. This solution has the disadvantage of introducing NULL values if most departments have fewer than three locations.

First normal form also disallows multivalued attributes that are themselves composite. These are called nested relations because each tuple can have a relation within it. Figure 4.10 shows how the EMP_PROJ relation could appear if nesting is allowed. Each tuple represents an employee entity, and a relation PROJS(Pnumber, Hours) within each tuple represents the employee’s projects and the hours per week that employee works on each project. The schema of this EMP_PROJ relation can be represented as follows:

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

The set braces { } identify the attribute PROJS as multivalued, and we list the component attributes that form PROJS between parentheses (). Interestingly, recent trends for supporting complex objects and XML data attempt to allow and formalize nested relations within relational database systems, which were disallowed early on by 1NF.

Notice that Ssn is the primary key of the EMP_PROJ relation in Figures 4.10(a) and (b), whereas Pnumber is the partial key of the nested relation; that is, within each tuple, the nested relation must have unique values of Pnumber. To normalize this into 1NF, we remove the nested relation attributes into a new relation and propagate the primary key into it; the primary key of the new relation will combine the partial key with the primary key of the original relation. Decomposition and primary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2, as shown in Figure 4.10(c).

[image:]
This procedure can be applied recursively to a relation with multiple-level nesting to unnest the relation into a set of 1NF relations. This is useful in converting an unnormalized relation schema with many levels of nesting into 1NF relations. As an example, consider the following:

CANDIDATE (Ssn, Name,{JOB_HIST(Company,Highest_position,{SAL_HIST(Year,Max_sal)})})

The foregoing describes data about candidates applying for jobs with their job history as a nested relation within which the salary history is stored as a deeper nested relation. The first normalization using internal partial keys Company and Year, respectively, results in the following 1NF relations:
CANDIDATE_1 (Ssn, Name)
CANDIDATE_JOB_HIST (Ssn, Company, Highest_position)
CANDIDATE_SAL_HIST (Ssn, Company, Year, Max-sal)
The existence of more than one multivalued attribute in one relation must be handled carefully. As an example, consider the following non-1NF relation:
PERSON (Ss#, {Car_lic#}, {Phone#})
This relation represents the fact that a person has multiple cars and multiple phones. If strategy 2 above is followed, it results in an all-key relation:
PERSON_IN_1NF (Ss#, Car_lic#, Phone#)
To avoid introducing any extraneous relationship between Car_lic# and Phone#, all possible combinations of values are represented for every Ss#, giving rise to redundancy. The right way to deal with the two multivalued attributes in PERSON shown previously is to decompose it into two separate relations, using strategy 1 discussed above: P1(Ss#, Car_lic#) and P2(Ss#, Phone#).

4.3.5 Second Normal Form
Second normal form is based on the concept of fully functional dependency. A functional X→ Y is a fully functional dependency is removal of any attribute A from X means that the dependency does not hold any more. A relation schema is in 2NF if every nonprime attribute in relation is fully functionally dependent on the primary key of the relation. It also can be restated as: a relation schema is in 2NF if every nonprime attribute in relation is not partially dependent on any key of the relation.

Practical Rule: "Eliminate Redundant Data," i.e., if an attribute depends on only part of a multivalued key, remove it to a separate table.

Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the primary key of R.

If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a number of 2NF relations in which nonprime attributes are associated only with the part of the primary key on which they are fully functionally dependent. Therefore, the functional dependencies FD1, FD2, and FD3 in Figure 4.3(b) lead to the decomposition of EMP_PROJ into the three relation schemas EP1, EP2, and EP3 shown in Figure 4.11(a), each of which is in 2NF.
[image:]
4.3.6 Third Normal Form
Third normal form is based on the concept of transitive dependency. A functional dependency X →Y in a relation is a transitive dependency if there is a set of attributes Z that is not a subset of any key of the relation, and both X→Z and Z→Y hold. In other words, a relation is in 3NF if, whenever a functional dependency X A holds in the relation, either (a) X is a superkey of the relation, or (b) A is a prime attribute of the relation.

Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to a description of a key, remove them to a separate table.

Definition: According to Codd’s original definition, a relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependent on the primary key.

The relation schema EMP_DEPT in Figure 4.3(a) is in 2NF, since no partial dependencies on a key exist. However, EMP_DEPT is not in 3NF because of the transitive dependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber. We can normalize EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2 shown in Figure 4.11(b). Intuitively, we see that ED1 and ED2 represent independent facts about employees and departments, both of which are entities in their own right. A NATURAL JOIN operation on ED1 and ED2 will recover the original relation EMP_DEPT without generating spurious tuples.

	1NF: R is in 1NF iff all domain values are atomic.
2NF: R is in 2 NF iff R is in 1NF and every nonkey attribute is fully dependent on the key.
3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the key.

[image:]
4.4 General Definitions of Second and Third Normal Forms

The relation schemas so that they have neither partial nor transitive dependencies because these types of dependencies cause the update anomalies. The steps for normalization into 3NF relations that we have discussed so far disallow partial and transitive dependencies on the primary key. The normalization procedure described so far is useful for analysis in practical situations for a given database where primary keys have already been defined. These definitions, however, do not take other candidate keys of a relation, if any, into account.
As a general definition of prime attribute, an attribute that is part of any candidate key will be considered as prime. Partial and full functional dependencies and transitive dependencies will now be considered with respect to all candidate keys of a relation.

4.4.1 General Definition of Second Normal Form Definition. A relation schema R is in second normal form (2NF) if every nonprime attribute A in R is not partially dependent on any key of R.

The test for 2NF involves testing for functional dependencies whose left-hand side attributes are part of the primary key. If the primary key contains a single attribute, the test need not be applied at all. Consider the relation schema LOTS shown in Figure 4.12(a), which describes parcels of land for sale in various counties of a state. Suppose that there are two candidate keys: Property_id# and {County_name, Lot#}; that is, lot numbers are unique only within each county, but Property_id# numbers are unique across counties for the entire state.

Based on the two candidate keys Property_id# and {County_name, Lot#}, the functional dependencies FD1 and FD2 in Figure 4.12(a) hold. We choose Property_id# as the primary key, so it is underlined in Figure 4.12(a), but no special consideration will be given to this key over the other candidate key. Suppose that the following two additional functional dependencies hold in LOTS:
FD3: County_name → Tax_rate
FD4: Area → Price

The LOTS relation schema violates the general definition of 2NF because Tax_rate is partially dependent on the candidate key {County_name, Lot#}, due to FD3. To normalize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2, shown in Figure 4.12(b). We construct LOTS1 by removing the attribute Tax_rate that violates 2NF from LOTS and placing it with County_name (the left-hand side of FD3 that causes the partial dependency) into another relation LOTS2. Both LOTS1 and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried over to LOTS1.

4.4.2 General Definition of Third Normal Form
Definition. A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional dependency X → A holds in R, either (a) X is a superkey of R, or (b) A is a prime attribute of R.

According to this definition, LOTS2 (Figure 4.12(b)) is in 3NF. However, FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attribute in LOTS1. To normalize LOTS1 into 3NF, we decompose it into the relation schemas LOTS1A and LOTS1B shown in Figure 14.12(c). We construct LOTS1A by removing the attribute Price that violates 3NF from LOTS1 and placing it with Area into another relation LOTS1B. Both LOTS1A and LOTS1B are in 3NF.

[image:]
Two points are worth noting about this example and the general definition of 3NF:
· LOTS1 violates 3NF because Price is transitively dependent on each of the candidate keys of LOTS1 via the nonprime attribute Area.
· This general definition can be applied directly to test whether a relation schema is in 3NF; it does not have to go through 2NF first. In other words, if a relation passes the general 3NF test, then it automatically passes the 2NF test.

If we apply the above 3NF definition to LOTS with the dependencies FD1 through FD4, we find that both FD3 and FD4 violate 3NF by the general definition above because the LHS County_name in FD3 is not a superkey. Therefore, we could decompose LOTS into LOTS1A, LOTS1B, and LOTS2 directly. Hence, the transitive and partial dependencies that violate 3NF can be removed in any order.

4.4.3 Interpreting the General Definition of Third Normal Form
A relation schema R violates the general definition of 3NF if a functional dependency X → A holds in R that meets either of the two conditions, namely (a) and (b).

The first condition “catches” two types of problematic dependencies:
· A nonprime attribute determines another nonprime attribute. Here we typically have a transitive dependency that violates 3NF.
· A proper subset of a key of R functionally determines a nonprime attribute. Here we have a partial dependency that violates 2NF.

Thus, condition (a) alone addresses the problematic dependencies that were causes for second and third normalization. Therefore, we can state a general alternative definition of 3NF as follows:

Alternative Definition. A relation schema R is in 3NF if every nonprime attribute of R meets both of the following conditions:
· It is fully functionally dependent on every key of R.
· It is nontransitively dependent on every key of R.

However, note the clause (b) in the general definition of 3NF. It allows certain functional dependencies to slip through or escape in that they are OK with the 3NF definition and hence are not “caught” by the 3NF definition even though they may be potentially problematic. The Boyce-Codd normal form “catches” these dependencies in that it does not allow them.

4.5 Boyce-Codd Normal Form
A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever a FD X -> A holds in R, then X is a superkey of R
· Each normal form is strictly stronger than the previous one:
· Every 2NF relation is in 1NF Every 3NF relation is in 2NF
· Every BCNF relation is in 3NF
· There exist relations that are in 3NF but not in BCNF

A relation is in BCNF, if and only if every determinant is a candidate key.

Additional criteria may be needed to ensure the set of relations in a relational database are satisfactory.

[image:]

Definition: A relation schema R is in BCNF if whenever a nontrivial functional dependency X → A holds in R, then X is a superkey of R.

The formal definition of BCNF differs from the definition of 3NF in that clause (b) of 3NF, which allows f.d.’s having the RHS as a prime attribute, is absent from BCNF. That makes BCNF a stronger normal form compared to 3NF. In our example, FD5 violates BCNF in LOTS1A because Area is not a superkey of LOTS1A. We can decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY, shown in Figure 4.13(a). This decomposition loses the functional dependency FD2 because its attributes no longer coexist in the same relation after decomposition.

14.5.1 Decomposition of Relations not in BCNF
As another example, consider Figure 4.14, which shows a relation TEACH with the following dependencies:
FD1: {Student, Course} → Instructor
FD2: Instructor → Course

[image:]

Note that {Student, Course} is a candidate key for this relation and that the dependencies shown follow the pattern in Figure 4.13(b), with Student as A, Course as B, and Instructor as C. Hence this relation is in 3NF but not BCNF. Decomposition of this relation schema into two schemas is not straightforward because it may be decomposed into one of the three following possible pairs:

1. R1 (Student, Instructor) and R2(Student, Course)
2. R1 (Course, Instructor) and R2(Course, Student)
3. R1 (Instructor, Course) and R2(Instructor, Student)

All three decompositions lose the functional dependency FD1 but we must meet the nonadditive join property. A simple test comes in handy to test the binary decomposition of a relation into two relations:

1. NJB (Nonadditive Join Test for Binary Decompositions). A decomposition D = {R1, R2} of R has the lossless (nonadditive) join property with respect to a set of functional dependencies F on R if and only if either
· The FD ((R1 ∩ R2) → (R1 − R2)) is in F+15, or
· The FD ((R1 ∩ R2) → (R2 − R1)) is in F+

If we apply this test to the above three decompositions, we find that only the third decomposition meets the test. In the third decomposition, the R1 ∩ R2 for the above test is Instructor and R1 − R2 is Course. Because Instructor → Course, the NJB test is satisfied and the decomposition is nonadditive. (It is left as an exercise for the reader to show that the first two decompositions do not meet the NJB test.) Hence, the proper decomposition of TEACH into BCNF relations is:

TEACH1 (Instructor, Course) and TEACH2 (Instructor, Student)

In general, a relation R not in BCNF can be decomposed so as to meet the nonadditive join property by the following procedure.16 It decomposes R successively into a set of relations that are in BCNF:
Let R be the relation not in BCNF, let X ⊆ R, and let X → A be the FD that causes a violation of BCNF. R may be decomposed into two relations:
R –A
XA

If either R –A or XA. is not in BCNF, repeat the process.

4.6 Multivalued Dependency and Fourth Normal Form

4.6.1 Formal Definition of Multivalued Dependency
Definition: A multivalued dependency X → Y specified on relation schema R, where X and Y are both subsets of R, specifies the following constraint on any relation state r of R: If two tuples t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the following properties, where we use Z to denote (R − (X ∪ Y)):
· t3[X] = t4[X] = t1[X] = t2[X]
· t3[Y] = t1[Y] and t4[Y] = t2[Y]
· t3[Z] = t2[Z] and t4[Z] = t1[Z]

[image:]

Whenever X →→ Y holds, we say that X multidetermines Y. Because of the symmetry in the definition, whenever X →→ Y holds in R, so does X →→ Z. Hence, X →→ Y implies X →→ Z and therefore it is sometimes written as X →→ Y|Z.

An MVD X →→ Y in R is called a trivial MVD if (a) Y is a subset of X, or (b) X ∪ Y = R. For example, the relation EMP_PROJECTS in Figure 4.15(b) has the trivial MVD Ename →→ Pname and the relation EMP_DEPENDENTS has the trivial MVD Ename →→ Dname. An MVD that satisfies neither (a) nor (b) is called a nontrivial MVD. A trivial MVD will hold in any relation state r of R; it is called trivial because it does not specify any significant or meaningful constraint on R.

The definition of fourth normal form (4NF), which is violated when a relation has undesirable multivalued dependencies and hence can be used to identify and decompose such relations.

Definition: A relation schema R is in 4NF with respect to a set of dependencies F if, for every nontrivial multivalued dependency X →→ Y in F+,X is a superkey for R. We can state the following points:
· An all-key relation is always in BCNF since it has no FDs.
· An all-key relation such as the EMP relation in Figure 14.15(a), which has no FDs but has the MVD Ename →→ Pname | Dname, is not in 4NF.
· A relation that is not in 4NF due to a nontrivial MVD must be decomposed to convert it into a set of relations in 4NF.
· The decomposition removes the redundancy caused by the MVD.

The process of normalizing a relation involving the nontrivial MVDs that is not in 4NF consists of decomposing it so that each MVD is represented by a separate relation where it becomes a trivial MVD. Consider the EMP relation in Figure 4.15(a). EMP is not in 4NF because in the nontrivial MVDs Ename →→ Pname and Ename →→ Dname, and Ename is not a superkey of EMP. We decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS, shown in Figure 4.15(b). Both EMP_PROJECTS and EMP_DEPENDENTS are in 4NF, because the MVDs Ename →→ Pname in EMP_PROJECTS and Ename →→ Dname in EMP_DEPENDENTS are trivial MVDs. No other nontrivial MVDs hold in either EMP_PROJECTS or EMP_DEPENDENTS. No FDs hold in these relation schemas either.

4.7 Join Dependencies and Fifth Normal Form

Definition: A join dependency (JD), denoted by JD(R1, R2, … , Rn), specified on relation schema R, specifies a constraint on the states r of R. The constraint states that every legal state r of R should have a nonadditive join decomposition into R1, R2, … , Rn. Hence, for every such r we have
* (πR1(r), πR2(r), … , πRn(r)) = r

The MVD is a special case of a JD where n = 2. That is, a JD denoted as JD(R1, R2) implies an MVD (R1 ∩ R2) →→ (R1 − R2)(or, by symmetry, (R1 ∩ R2) →→ (R2 − R1)). A join dependency JD(R1, R2, … , Rn), specified on relation schema R, is a trivial JD if one of the relation schemas Ri in JD(R1, R2, … , Rn) is equal to R. Such a dependency is called trivial because it has the nonadditive join property for any relation state r of R and thus does not specify any constraint on R. We can now define the fifth normal form, which is also called project-join normal form.

Definition. A relation schema R is in fifth normal form (5NF) (or project-join normal form (PJNF)) with respect to a set F of functional, multivalued, and join dependencies if, for every nontrivial join dependency JD(R1, R2, … , Rn) in F+ (that is, implied by F), every Ri is a superkey of R.

HMSIT,Tumkur	Page 19

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.emf

image2.emf

